Бериллиевая бронза: состав, свойства и применение

Бериллиевая бронза БрБ2

БрБ2 — это безоловянная бериллиевая бронза, обрабатываемая давлением. Химический состав сплава БрБ2 описан в ГОСТ 18175-78 и включает в себя следующие компоненты: медь 96,9-98,0 %, бериллий 1,8-2,1 %, никель 0,2-0,5 % и до 0,5 % примесей.
Сплав выделяется среди прочих бронз высокой износостойкостью и стойкостью к коррозионной усталости. Наряду с другими бронзами БрБ2 обладает хорошими антифрикционными и пружинящими свойствами, а также средними тепло и электропроводностью, что обуславливает применение ленты и проволоки БрБ2. Кроме того можно улучшить механические качества этого сплава, если подвергнуть его процедурам закалки и старения. Так, например, широко используют пруток БрБ2Т.

Свойства БрБ2

Химический состав БрБ2

Химсостав сплава БрБ2 по ГОСТ 18175 – 78

FeSiNiAlCuPbBeПримесей
до 0.15до 0.150.2 – 0.5до 0.1596.9 – 98до 0.0051.8 – 2.1всего 0.5

Литейно-технологические свойства бронзы БрБ2

Температура плавления БрБ2955 °C
Температура горячей обработки БрБ2:750 – 800 °C
Температура отжига БрБ2:530 – 650 °C

Механические свойства БрБ2

СортаментПредел кратковременной прочности s вПредел пропорциональности (предел текучести дляостаточной деформации) s TОтносительное удлинение при разрыве d 5
МПаМПа%
Проволока мягк., ГОСТ15834 – 77343-68615-60
Проволока тверд.,ГОСТ 15834 – 77735-1372
Полоса мягк., ГОСТ1789-70390-59020-30
Полоса твердая, ГОСТ1789-70590-9302.5
Сплав мягкий , ГОСТ1789-70400-600196-34440-50
Сплав твердый, ГОСТ1789-70600-950588-9302-4

Твердость прутков из БрБ2 прописана в ГОСТ 15835-2013 (взамен ГОСТ 15835-70)

Твердость БрБ2

Твердость БрБ2, Пруток мягкий ГОСТ 15835-2013HB 10 -1 = 100 – 150 МПа
Твердость БрБ2, Пруток твердый ГОСТ 15835-2013HB 10 -1 = 150 МПа

HB – Твердость по Бринеллю бериллиевой бронзы

Физические свойства БрБ2 (бронзы бериллиевой)

Температура TМодуль упругости первого рода E 10 -5Коэффициент температурного (линейного) расширения a 10 6Теплоемкость lПлотностьУдельная теплоемкость CУдельное электросопротивление R 10 9
ГрадМПа1/ГрадВт/(м·град)кг/м 3Дж/(кг·град)Ом·м
201.3184820070
10016.6419

Аналоги БрБ2

СШАГерманияЯпония
DIN,WNrJIS
C17200
Alloy25
2.1447
CuBe2
C1720

Применение бериллиевой бронзы БрБ2

Прутки из бронзы БрБ2 применяются в приборостроении и автомобилестроении. Ленты БрБ2 также применяются в приборостроении и производстве упругих и пружинящих деталей. Аналогичное применение нашла проволока в машиностроении и приборостроении. Бронза БрБ2 используется в различных областях производства. Из неё изготавливают антифрикционные детали и пружинящие детали: пружинящие детали и пружины. Из неё изготавливают детали ответственного назначения. Также из неё изготавливают неискрящие инструменты.

Технологические характеристики позволяют изготавливать из бериллиевых бронз сложные отливки высокого качества, но обычно детали из них производят из заготовок, подвергнутых предварительной пластической деформации (листы и полосы, проволока, ленты и др). Широкое применение сплавов бериллиевой группы обусловлено еще и тем, что они хорошо поддаются различным видам обработки, а для соединения деталей из них можно использовать все известные способы (сварка и пайка).

Пайка и сварка БрБ2

Пайку бериллиевых бронз следует выполнять сразу же, как была выполнена тщательная механическая зачистка соединяемых элементов. В качестве припоя при выполнении такой технологической операции используются сплавы на основе серебра, а в защитном флюсе, использование которого необходимо, должны в обязательном порядке содержаться фтористые соли. Высокое качество пайки деталей из данных сплавов обеспечивает технология, предполагающая выполнение соединения в вакууме и использование слоя защитного флюса.

Детали из бериллиевых бронз не соединяют при помощи электродуговой сварки, для этого успешно используют другие технологии: точечную, шовную, роликовую и сварку в среде инертных газов. Такое ограничение в применении электродуговой сварки обусловлено тем, что сплавы данной группы обладают большим температурным интервалом кристаллизации. Кроме этого, сварку бронз бериллиевой группы нельзя выполнять после термической обработки, что обусловлено их особыми механическими свойствами.

Износостойкость и коррозионной устойчивость бронзы БрБ2

Детали из бериллиевой бронзы не истираются и в то же время бережно воздействуют на сопрягаемые механизмы, хорошо сопрягаются с друг другом, полируются и идеальным образом взаимодействуют в механизмах при заданных параметрах. Но даже если условия эксплуатации нарушены, детали из БрБ2 способны выдерживать большие нагрузки трения и других механических воздействий. При работе механизмов в ходе изнашивания БрБ2 не откалывается большими кусками, а истирается постепенно, давая очень мелкую стружку.

Коррозионная усталость – это один из показателей коррозионной стойкости металлов. Когда детали работают под воздействием большой массы, циклических динамических нагрузок в коррозионной среде, велика вероятность выхода из строя конструкций, в которых они используются. Сплав БрБ2 хорошо проявляет себя в различных коррозионных средах и может быть использован для изготовления ответственных деталей, так как коррозия проявляется достаточно медленно и не оказывает значительного воздействия на механические и физические свойства деталей из этого материала долгое время. Однако, под действием влажных паров аммиака и воздуха бериллиевые бронзы склонны к межкристаллизационной коррозии и растрескиванию. В газовой среде, насыщенной галогенами (фтором, бромом, хлором и йодом), на их поверхности образуются галогениды бериллия, из-за чего происходят уменьшение его концентрации в сплаве. Особенно активно процесс взаимодействия с галогенами происходит при повышенных температурах. В связи с этим, бериллиевую бронзу БрБ2 не рекомендуют использовать для изготовления деталей, эксплуатируемых в указанных газах.

Облагораживание и закалка БрБ2

Путём облагораживания изделия из БрБ2 получаются более твёрдыми и более пластичными. Соответственно выпускаются полуфабрикаты в мягком (М) и твёрдом (Т) состоянии. В ходе процедуры закалки металл нагревают до некоторой температуры, после чего остужают в воде. В результате пластичные свойства металла повышаются и его применяют для изготовления деталей путём прокатки, ковки, вытяжки и гибки в холодном состоянии. Также выпускаются полуфабрикаты из БрБ2 с закалкой и холодной деформацией. БрБ2 закаливают при температуре 750-790 °C, после чего сплав отпускают при температуре в пределах 300-350 °C. После холодной деформации механические качества твёрдости, прочности и текучести улучшаются. БрБ2 Т выделяется среди прочих бронз самым высоким показателем прочности на растяжение. Медно-бериллиевый сплав БрБ2, подвергаемый термическому закаливанию, становится более прочным, упругим и пластичным. Первоначально его приводят в мягкое состояние, нагревая до 760-780°С, а затем подвергают старению в воде при температуре 310-330°С в течение 3 часов. При нагревании и последующем охлаждении сплава до комнатной температуры бериллий растворяется в меди с образованием насыщенного твердого раствора. Последующая закалка приводит к его осаждению, в результате чего бронза БрБ2 приобретает высокую твердость до 350 – 400 НВ.

Бериллиевая бронза: характеристики

Бериллиевая бронза – это сплав, который активно используется в производстве деталей различного назначения и не только. Его широкое применение обусловлено уникальными свойствами. Итак, что же представляет собой этот сплав, какие у него особенности?

Свойства бронзы

Перед тем как перейти к обсуждению основной темы, хотелось бы обратить внимание на характеристики и состав бронзы. Бериллиевый сплав все-таки отличается по свойствам. Чем является «изначальный» вариант?

Бронза – это сплав меди, которая представляет собой пластичный переходный металл розовато-золотистого цвета. Встречается в самородном виде чаще серебра, золота и железа.

Традиционно бронзой называются сплавы с добавлением олова. Также есть варианты с кремнием, свинцом, алюминием и прочими элементами. Есть только два исключения. Медь с цинком – это латунь. С никелем – мельхиор.

В зависимости от наличия добавочного металла и примесей, различают марки бронзы. Бериллиевая – самая прочная. Но об этом – поподробней.

Химический состав

Итак, бериллиевая бронза – это дисперсионно упрочняемый сплав. Его особенность заключается в температурной зависимости растворимости легирующих компонентов. В процессе закалки в твердом растворе выделяется избыточное количество их атомов (носителей свойств вещества).

В результате получается пересыщенный твердый раствор. Он является термодинамически неустойчивым, стремится к распаду, и чем выше температура – тем сильнее. А эффект упрочнения определяет дисперсность выделений, которые образовались при распаде.

Из сплавов системы Cu-Be чаще всего применяют бериллиевую бронзу БрБ2 (марка). В ней содержится около 2% данного вещества. Еще используются сплавы МНБ. В них содержится еще и никель, а процент бериллия равен 0.8%. Третий тип сплавов – МКБ. В них вместо никеля присутствует кобальт. Бериллий содержится в том же количестве. Первый сплав из перечисленных называют высоколегированным. Второй и третий – низколегированными.

Все они в закаленном состоянии имеют отличную пластичность и технологичность, высокие механические свойства в состаренном состоянии. Нередко их качества улучшают посредством пластической деформации.

Когда материал уместен?

Иногда без применения бериллиевой бронзы не обойтись. Использование данного материала является высокоэффективным, если нужно добиться:

  • Отсутствия у конечного изделия ферромагнитных свойств и способности к образованию искр при ударах.
  • Высокой электропроводности.
  • Повышенных упругих и прочностных свойств.
  • Высокой теплопроводности.
  • Устойчивости к коррозии.

Все перечисленные характеристики становятся еще лучше, если сплав в конце подвергают закалке или термической обработке другого вида. Тому же искусственному старению, например.

А самый эффективный метод, используемый для достижения пластичности сплава, – это закалка, осуществляемая при температуре в 775 °C.

Использование в приборостроении

Оно является наиболее распространенным. Бериллиевая бронза применяется при производстве электронных, а также электрических деталей. В первую очередь это пружинные контакты, соединители, переключатели.

Также без нее не обходится производство оптиковолоконного телекоммуникационного оборудования. К данной категории относятся:

  • Оптические передатчики.
  • Предусилители.
  • Микросхемы синхронизации и восстановления данных.
  • Блоки преобразования последовательного кода в параллельный.
  • Кабели.
  • Параллельно-последовательные преобразователи.
  • Лазерные формирователи.

Также бериллиевую бронзу используют для производства гнездовых разъемов для соединения интегральных систем с печатной платой.

И, поскольку с развитием технологий усложняется компьютерная и мобильная техника, электронные детали все миниатюризируются. Спрос на бронзо-бериллиевые сплавы повышается, поскольку именно они являются идеальным материалом для изготовления мелких, легких и надежных деталей. Во многих современных смартфонах, коммуникаторах, ноутбуках и планшетах они уже используются.

А компьютерные соединители, переключатели, пружины и прочие детали уже давно из них изготавливают. Оценочно в 1999 году в каждом ПК содержалось как минимум 2 грамма бериллия в составе бронз.

Автопромышленность

Еще одна сфера, в которой благодаря своим свойствам бериллиевая бронза часто применима. В частности, многие электронные детали моторных отсеков делают именно из нее. А еще из данного материала изготавливают электронные схемы систем безопасности многих автомобилей.

Поскольку степень компьютеризации и производство машин с каждым годом лишь растут, то и сплавов требуется больше.

Стоит отметить, что на долю автопромышленности приходится порядка 12% мирового потребления данного материала. Из него делают подшипники, втулки, детали узлов, комплектующие. Неудивительно, ведь его прочность значительно превосходит показатели латуни и сплавов, в которые добавляют кремний, олово, фосфор, хром и алюминий.

Нефтегазовая отрасль

И здесь задействована бериллиевая бронза. Характеристики данного сплава позволяют использовать его в производстве оборудования, предназначенного для бурения и нефтедобычи. Из него делают:

  • Скользящие опоры нефтяных насосов.
  • Резьбовые соединения колонн бурильных труб.
  • Безискровые вспомогательные инструменты.
  • Трубы.
  • Детали насосов.
  • Опоры буровых долот.

Особо ценится этот материал за высокую упругость. Если ударить по изготовленным из него деталям, то искра не возникнет. Это очень важно на столь опасных производствах, особенно при добыче и последующей транспортировке углеводородов. А чем является нефть? Ископаемым топливом, горючей жидкостью, состоящей из сложной смеси углеводородов и других химических соединений.

Авиастроение

Наверняка всем знакомы такие самолеты, как Boeing 787 и Airbus A380. В производстве их корпусов был использован бериллиевый сплав.

Дело в том, что это – идеальный материал для данных целей. У него намного более высокая твердость, прочность, износостойкость и несущая способность, чем у любого другого сплава. Он образует на поверхности корпуса стойкий, но тонкий слой окиси, которая оказывает действие самовосстанавливающейся смазки.

Также из этого сплава сделаны втулки, испытывающие повторяющийся контакт с поверхностью. Она должна постоянно оставаться гладкой, а значит и материал нужен такой, который не изнашивается. Логично, почему применяют бериллиевый сплав.

Плюс ко всему, у него отличные тепловые свойства – термическая стабильность и низкий коэффициент теплового расширения. Это важнейшие качества, учитываемы в аэрокосмическом строении в первую очередь. Сплавы должны выдерживать экстремальные температуры.

Кстати, еще один плюс материала – это его хорошая текучесть в расплавленном состоянии. Данное свойство делает его удобным для сложных отливок. Корпуса трубок Пито, например, включают в себя крайне тонкие литые конструкции. И их можно отлить лишь из хорошо текучего материала. И направляющие лопасти вертолетных турбин, к слову, тоже изготавливают из этих сплавов.

Контактная сварка

Это процесс, в ходе которого образуется неразъемное сварное соединение посредством нагрева металла током, проходящим через него, с дальнейшей пластической деформацией этой зоны под действием сжимающего усилия. То есть тоже техническая сфера. Здесь применение находят выполненные из бериллиевого сплава:

  • Электроды. Проводники тока.
  • Электрододержатели. Часть электросварочного аппарата, в которую вставляется электрод.

Срок их службы значительно выше, чем у тех компонентов, которые изготавливают из других сплавов (хромовых бронз, если быть точнее). Спектр применения широк. Вот, что сваривают с использованием компонентов из бериллиевой бронзы: проволоку, строительную арматуру, листовую углеродистую сталь, никель-хром-кремниевые сплавы, рельсы для магистральных железнодорожных путей и т.д.

Это действительно износостойкий материал. Компоненты, сделанные из него, могут работать с большими усилиями прижатия электродов, мощным током и высоким темпом. Они выдерживают большое количество сварок, поскольку у них повышенный модуль упругости, стойкость к знакопеременным нагрузкам и высокой температуре разупрочнения. А значит, не только электроды приходится реже менять – точность и прочность соединений увеличивается в несколько раз.

Литье сплавов и металлов

Это следующая сфера применения бериллиевой бронзы. По ГОСТу, ее разрешено использовать в плунжерах (поршнях) оборудования для литья под давлением. В том числе алюминия, в кокилях (многоразовые формы), в стенках кристаллизаторов и в установках непрерывной разливки.

Какие преимущества обсуждаемого материала здесь? Увеличенный срок службы, а еще отсутствие необходимости наносить на стенки и литейные формы дорогостоящее защитное покрытие.

Уникальные свойства

В наше время существует множество различных металлов и сплавов. Так что в заключение хотелось бы сказать о том, почему медный материал с добавлением бериллия ценится в перечисленных областях больше всего. Итак, этот сплав:

  • Действительно упругий. Он буквально «пружинит».
  • Очень долговечный. Десятилетиями будет сохранять свою изначальную твердость и соответствующий внешний вид.
  • Легко поддается «совершенствованию». Временное сопротивление равно 450 Мпа, но его можно увеличить на 40%, лишь подвергнув деформированию, о котором говорилось ранее. Но вообще его реально довести и до 1400 Мпа.
  • Своих свойств не меняет, даже если разогреть его до 340 °С. Если увеличить температуру до 500 °С, то его качества станут схожи с теми, которые свойственны алюминиевым, фосфорным, оловянным сплавам.

Кстати, чтобы сделать бериллиевый материал еще прочнее, иногда в него добавляют бор, магний, титан, никель, кобальт или редкоземельные металлы. В определенных случаях такие примеси допустимы и оправданы.

Бериллиевые бронзы, обрабатываемые давлением

Химический состав

Бериллиевые бронзы – это сплавы меди с бериллием. Они применяются в промышленности для изготовления упругих элементов ответственного назначения (плоских и витых пружин, упругих элементов в виде гофрированных мембран, токопроводящих упругих деталей электрооборудования, пружинящих деталей электронных приборов и устройств и т.д.). Их отличают высокие: прочностные свойства, предел упругости и релаксационная стойкость, электро- и теплопроводность, сопротивление коррозии и коррозионной усталости. Они не магнитны, не дают искры при ударе, технологичны, т.е. хорошо штампуются, свариваются. Из бериллиевой бронзы изготавливают инструменты стойкие к образованию искры для работы на пожароопасных производствах. Бериллиевые бронзы мало склонны к хладоломкости и могут работать в интервале температур от -200°С до +250°С. К недостаткам этих сплавов относятся высокая стоимость и дефицитность бериллия, а также его токсичность.

Оптимальными свойствами обладают сплавы, содержащие около 2—2,5 % Be. При дальнейшем увеличении содержания бериллия прочностные свойства повышаются незначительно, а пластичность становиться чрезмерно малой.

Согласно диаграмме состояния Cu-Be, в равновесии с α -твердым раствором бериллия в меди в твердом состоянии могут находиться фазы β и γ . Равновесная γ (CuBe)-фаза – твердый раствор на основе соединения CuBe – имеет упорядоченную ОЦК решетку. Такую же решетку, но неупорядоченную имеет β -фаза. Фаза β устойчива только до температуры 578°С, при которой она претерпевает эвтектоидный распад β → α+γ (CuBe).

Химический состав (%) и назначение безоловянных деформируемых бронз(ГОСТ 18175–78)

Марка бронзыBeNiTiMgПримесиПримерное назначение
БрБ 21,8–2,10,2-0,50,15Al; 0,15Fe; 0,15Si; 0,005Pb; в сумме не более 0,5
БрБ 2,52,3–2,60,2–0,50,1Al; 0,15Fe; 0,15Si; 0,005Pb; в сумме не более 0,5
БрБНТ 1,71,60–1,850,2–0,40,1–0,250,1Al; 0,15Fe; 0,15Si; 0,005Pb; в сумме не более 0,5
БрБНТ 1,91,85–2,100,2–0,40,10–0,250,1Al; 0,15Fe; 0,15Si; 0,005Pb; в сумме не более 0,5
БрБНТ 1,9Мг1,85–2,100,2–0,40,10–0,250,07–0,130,1Al; 0,15Fe; 0,15Si; 0,005Pb; в сумме не более 0,5
БрБНТ0,4–0,71,4–1,60,05–0,150,1Al; 0,15Fe; 0,15Si; 0,005Pb; в сумме не более 0,5Листы, полосы, прутки. Детали машин стыковой сварки, электроды для сварки коррозионно­стойких сталей и жаро­прочных сплавов

Бериллиевые бронзы широко применяются за рубежом в промышленно развитых странах. Из них изготовляют плиты, листы, ленты, горячепрессованные прутки, сварные и бесшовные трубы, прессованные профили и другие полуфабрикаты. Для улучшения свойств бериллиевые бронзы дополнительно легируют небольшими добавками металлов VIIIA группы – кобальтом, никелем и железом. В марочном составе обычно оценивают суммарное содержание этих металлов.

Химический состав (%) стандартных бериллиевых бронз, применяемых в США, Германии, Японии, Франции и Англии

МаркаСтранаСтандартВеДругие элементы и примеси
С17000СШАASTM B1941,60–1,790,20 Аl; 0,20 Si; (Niі+Co) > 0,20; (Ni+Со+Fе) = 0,6
С17200СШАASTM B194, В5701,8–2,0(Ni+Со) > 0,20; (Ni+Со+Fе) = 0,6 сумма примесей не более 0,5
CuBe1,7
(2.1245)
ГерманияDIN 176661,6–1.8(Ni+Со) > 0,20; (Ni+Со+Fe) = 0,6
CuВе2ГерманияDIN 176661,8–2,1(Ni+Со) > 0,20; (Ni+Со+Fе) = 0,6 сумма примесей не более 0,5
CuВе2РЬ (2.1248)ГерманияDIN 176661,8–2,10,20–0,6 РЬ; (Ni+Со) > 0,20; (Ni+Со+Fе) = 0,6 сумма примесей не более 0,5
С1700ЯпонияJIS1301,6–1,79(Cu+Ве+Nі+Со+Fе)>99,5; (Ni+Со) > 0,2; (Ni+Со+Fе) > 0,6
С1720ЯпонииJIS Н31301,8–2,0(Cu+Ве+Nі+Со+Fе)>99,5; (Ni+Со) > 0,2; (Ni+Со+Fе) > 0,6
Сu-Ве 250Англия1,8–2,00,25 (Со+Ni)
Сu-Ве 275Англия2,13–2,80,3–0,6 (Со+Ni)
V ВеФранция1,6–1,90,15–0,35(Со+Ni)

Термическая обработка бериллиевой бронзы

Предельная растворимость бериллия в меди в двойной системе Cu-Be при 870°С составляет 2,7% (по массе), и она резко уменьшается с понижением температуры. Это указывает на возможность применения упрочняющей термообработки к меднобериллиевым сплавам. Бериллиевые бронзы являются дисперсионно-твердеющими сплавами, причем эффект упрочнения при термической обработке у них максимальный среди всех сплавов на медной основе. Они подвергаются закалке и последующему старению.

Технологические свойства и режимы обработки бериллиевых бронз

МаркаТемпература, °СОбрабаты­ваемость резанием, %
(ЛС63-3 – 100%)
Линейная
усадка, %
Коэффициент трения
литьягорячей обработкиотжигазакалкистарениясо смазкойбез смазки
1) Низкотемпературный отжиг для повышения упругих характеристик, рекристаллизационный отжиг проводят при температурах 600–700°С.
БрБ21030‑1060700‑800760‑780320201,80,0160,35
БрБ 2,5 1)1030‑1060700‑800770‑790300
БрБНТ 1,71030‑1060700‑800755‑775300
БрБНТ1,91030‑1060700‑800760‑780320

При термической обработке бериллиевых бронз существенным является выбор температуры нагрева под закалку (Tзак). Ее значение определяет полноту перевода легирующих элементов в твердый раствор и возможность его гомогонизации. С точки зрения указанных факторов, предпочтительно повышение температуры закалки.

Нагрев под закалку выше оптимальной температуры способствует дополнительному пересыщению твердого раствора бериллием (особенно для сплава БрБ2,5) и вакансиями. Оба эти фактора ускоряют распад твердого раствора при последующем старении, но повышение температуры закалки приводит к росту зерен α -твердого раствора, что приводит к понижению пластичности и упругих свойств и ухудшает штампуемость. Для получения мелкого зерна при нагреве до температуры закалки в структуре бронзы должно сохраняться некоторое количество равномерно распределенных включений избыточной β -фазы, которые препятствуют собирательной рекристаллизации α -твердого раствора. Получению мелкозернистой сгруктуры способствует также никель: дисперсные частицы фазы NiBe не растворяются полностью при нагреве под закалку и сдерживают рост зерен α -раствора.

Диапазон температур нагрева под закалку бериллиевых бронз составляет 760—800°С. Выше указанных температур бронзы нагревать не следует из-за опасности роста зерен и ухудшения служебных характеристик сплава. Нагрев под закалку ниже оптимальной температуры уменьшает пересыщение α -твердого раствора бериллием в закаленном сплаве и интенсифицирует прерывистый распад при старении с образованием грубой двухфазной структуры с некогерентным выделением γ -частиц в приграничных участках. Закалка с низких температур стимулирует прерывистый распад особенно сильно при высокотемпературном старении (выше 350°С). Локализованный в приграничных участках прерывистый распад твердого раствора приводит к охрупчиванию сплава.

Скорость охлаждения

Важным параметром закалки бериллиевых бронз является скорость охлаждения, которое должно быть достаточно резким, чтобы исключить распад пересыщенного твердого раствора. При выборе закалочных сред руководствуются критическими скоростями (vKp), оцениваемыми с помощью термокинетических диаграмм или диаграмм изотермического превращения переохлажденного α -твердого раствора. Эти диаграммы строят по микроструктурным исследованиям или по изменению свойств в процессе распада α -раствора по сравнению со свойствами после старения на максиматьную прочность.

Данные показывают, что при закалке бронзы наибольшие скорости охлаждения должны быть в интервале температур 550— 250°С. Замедленное охлаждение в этом интервале может вызвать преждевременное выделение из α -твердого раствора фазы-упрочнителя и, следовательно, привести к уменьшению способности к последующему старению. Критическая скорость закалочного охлаждения, позволяющая получить необходимое сочетание физико-механических свойств составляет 60°С/с для бронзы с 2,46% Ве и 0,27% Со.

Критическая скорость охлаждения у бериллиевых бронз достаточно высока и составляет 30— 60°С/с, поэтому их обычно закаливают в воде. Для уменьшения критической скорости в бериллиевые бронзы вводят никель или кобальт. Добавки этих металлов приводят к повышению устойчивости переохлажденного α -твердого раствора в области температуры его наименьшей стабильности (

500°С). Примерно так же на устойчивость твердого раствора влияют небольшие добавки магния. Важным достоинством бериллиевых бронз является их высокая пластичность при умеренной прочности в закаленном состоянии: σв = 400—500 МПа. δ = 30—45%. В этом состоянии они легко переносят операции гибки, вытяжки и другие виды деформации.

Температурный режим старения и фазовые переходы при старении

Температурный режим старения зависит от необходимого сочетания свойств изделия и находится в интервале температур 300—350°С. При старении бериллиевых бронз распад α -раствора характеризуется сложностью форм фазовых переходов. Превращение проходит через ряд метастабильных состояний, последовательность которых зависит от температуры изотермической выдержки. При температурах ниже 430°С распад начинается с образования зон Гинье-Престона (ЗГП), представляющих собой дискообразные монослои атомов бериллия, расположенные паралельно плоскостям <100>матрицы. Их диаметр оценивается пределами 2— 10 нм, а толщина – 0,2—1,0 нм. Монослои окружены полями искажений решетки матрицы.

После образования ЗГП при температурах ниже 300—350°С появляются частицы метастабильной γ” -фазы, имеющей моноклинную решетку: а = b = 0,254 нм, с = 0,324 нм, Р – 85°25′.

Метастабильная γ’ -фаза образуется из γ” -фазы при температурах ниже 350°С, либо непосредственно из ЗГП при более высоких температурах. Она имеет объемноцентрированную тетрагональную решетку с периодом а = 0,279 нм и с – 0,254 нм и плоскостью габитуса <112> α . По мере развития процесса старения размеры выделений γ’ -фазы увеличиваются а тетрогональность ее решетки уменьшается.

После длительного старения и особенно выше температуры 400 °С γ’ -фаза теряет когерентность с матрицей, степень тетрагональности ее решетки приближается к единице, и она превращается в стабильную γ (CuBe)-фазу. Возможно образование γ -фазы из метастабильной γ’ -фазы и непосредственно из α -твердого раствора. Таким образом, в бериллиевых бронзах при различных температурах старения наблюдается следующая последовательность превращений:

После дисперсионного твердения при старении готовые детали приобретают высокиеупругие свойства: предел упругости достигает 750—770 МПа, предел выносливости 250—290 МПа (на базе 1⋅10 8 циклов), твердость 350—400 HV. Температуроустойчивость упругих элементов из бериллиевых бронз значительно выше по сравнению с другими сплавами на медной основе, электропроводность составляет 25—30 % от электропроводности меди. Бериллиевые бронзы хорошо свариваются и паяются. Обработка резанием даже после дисперсионного твердения затруднений не вызывает.

Типичные свойства бериллиевых бронз

МаркаСостояние материалаσB ,
МПа
σ0,2
МПа
δ
%
HV (НВ)σ0,005
МПа
E
ГПа
KCU, МДж/м 2σ-1 на базе 1⋅10 8 циклов, МПа
БрБ2Закаленное50025040901301170,7
Состаренное1250100033707701310,125245
Состаренное после закалки и деформации на 40%135012002400960135294
БрБ 2,5Закаленное55030030115160120,5
Состаренное130011002380790133
Состаренное после закалки и деформации на 40%140013001,5410970138294
БрБНТ 1,7Закаленное4202205085120107
Состаренное11509307320700128245
Состаренное после закалки и деформации на 40%125011503360890131,5275
БрБНТ 1,9Закаленное4802505090130110
Состаренное12501000636077130245
Состаренное после закалки и деформации на 40%135011802400960134294
Механические свойства бериллиевых бронз

МаркаЗакалкаСтарение по оптимальному режиму
σB , МПаδ ,%σB , МПаσ 0,02, МПаδ ,%
БРБНТ 1,9400 – 50038 – 451150 – 12507004 – 6
БрБ2400 – 50038 – 451150 – 12506004..6
БрБ 2,5400 – 50030 – 381250 – 13506503 – 5
БрБНТ 1,7300 – 40045 – 501000 – 11004005 – 7

Легирование бериллиевых бронз

Легирование бериллиевых бронз направлено на улучшение их свойств. В качестве легирующих элементов используют Ni, Co и Ti. Эти элементы подавляют прерывистый распад и замедляют непрерывный. Такое влияние никеля и кобальта связывают с тем, что эти элементы, имеющие меньший атомный радиус, чем медь, уменьшают период решетки α -раствора, что приводит к сохранению когерентности матрицы и выделений, т.е. к отностильной стабилизации γ’ -фазы. Кроме того, Ni и Ti могут образовывать соединения типа NiВе, Cu3Тi, которые обеспечивают дополнительное упрочнение.

Бериллиевые бронзы отличаются высоким сопротивлением малым пластическим деформациям из-за сильного торможения дислокаций дисперсными частицами, выделившимися из твердого раствора при старении, а следовательно, они имеют высокий предел упругости. С увеличением этого сопротивления уменьшаются микропластические деформации при заданном напряжении и. следовательно, уменьшается релаксация напряжений. Все это приводит к повышению релаксационной стойкости сплавов — основной характеристики, определяющей свойства упругих элементов.

Бериллиевые бронзы часто подвергают низкотемпературной термомеханической обработке (НТМО), заключающейся в применении пластической деформации между операциями закалки и старения. В этом случае деформация закаленного сплава обеспечивает равномерный распад по всему объему твердого раствора при старении и получение высоких упругих характеристик.

Бериллиевая бронза – уникальный сплав

Сплав, состоящий из меди и бериллия и подвергнутый термической обработке называют бериллиевой бронзой, обладающей уникальными свойствами, и нашедшей применение в современном смартфоне и телефоне.

Базовые параметры

БрБ2 – это самая широко распространённый тип бериллиевой бронзы. В состав этого материала входит бериллий, который обеспечивает ему высокую твёрдость – до 400 единиц по Бринелю. Но, необходимо отметить, что такая высокая твёрдость присуща сплаву, который прошёл через искусственное старение при температуре 300 – 350 градусов цельсия.

Бериллиевая бронза обладает высокой прочностью, стойкостью к воздействию различных химических веществ. Кроме этого, сплав отличается хорошей свариваемостью. Набор этих свойств позволяет применять бериллиевую бронзу в различных отраслях, например, в электротехнической, из него производят элементы контактных групп, пружины, различного типа мембраны. К сожалению, бериллий стоит достаточно дорого и это мешает массовому применению этого материла.

Массовый объем бериллия в таком сплаве лежит в диапазоне от 1,5 до 3 %, остальное занимает медь. Вместе с тем существуют сплавы, в состав которых входят кобальт или никель. Первую называют медно – кобальтовой, она носит название МКБ. Вторую называют медно – никелевой и обозначают МНБ. В этих марках объем бериллия не превышает 0,8%. МКБ и МНБ относят к низколегированным составам.

Между тем существует такая марка, как БрВ2,5. В ней массовая доля легирующих добавок составляет 2,5% и это позволяет отнести ее к высоколегированным.

Существуют и импортные материалы, имеющие следующую маркировку:

  • CuСо2Be, alloy 10, С17500;
  • CuNi2Be, alloy 11, С17510.

Бериллиевые бронзы имеют следующее свойство – при нагревании до определенных температур, легирующие добавки, входящие в их состав, начинают растворяться. То есть при термической обработке (закалке), концентрация легирующих компонентов растет. В итоге происходит образование так называемого пресыщенного раствора, который, кстати, обладает низкой устойчивостью. Все дело в том, что он (раствор) может сохранять базовые свойства, возникшие во время его появления. Если изменяются какие-либо параметры, например, температура, то раствор начинает распадаться на составные части. Более того, при нагреве, в соответствии с законами термодинамики, процесс разложения ускоряется. При разложении раствора образуются элементы разного размера и именно от их наличия зависит упрочняющий эффект, достигаемый в процессе закалки. Это называется дисперсионным упрочнением.

Важно – соблюдение всех технологических норм позволяет значительно повысить предельные параметры текучести бериллиевой бронзы.

Ключевой параметр термообработки – это температура. При обработке медно – бериллиевого сплава она лежит в пределах 775 ºC. Такая обработка приводит к росту временного сопротивления от 450 до 1400 МПа. Кроме того детали получают дополнительную пластичность.

Технологические свойства бериллиевой бронзы

К отличительным параметрам бериллиевой бронзы необходимо отнести теплостойкость. Свойства материалов этой группы не изменяются при нагреве вплоть до 340 ºC, а по достижении 500 ºC медно – бериллиевые сплавы показывают характеристики, такие же, как у алюминия или олова и их сплавов, работающих их в нормальных условиях.

Совокупность параметров медно – бериллиевого сплава допускает их использовать для изготовления высокоточных отливок. Кроме этого из бронзы производят листы, полосы, ленты (ГОСТ 1789-70), пруток (ГОСТ 15835-70), проволоку (ГОСТ 15834-77).

Надо отметить что этот материал легко поддается всем видам механической обработки, сварки и пайки. Но, выбирая бериллиевую бронзу в качестве материала для производства деталей и узлов, технолог должен помнить, что существует ряд ограничений, в частности на сварочные операции. Перед этими операциями необходимо выполнить зачистку кромок обрабатываемых деталей. Для пайки необходимо применять припой, в состав которого входит серебро. Место пайки, должно быть, защищено флюсом, содержащим в себе фтористые соли. Максимальное качество пайки может быть достигнуто при выполнении ее в вакууме.

Практика применения

Чаще всего детали, выполненные их бериллиевых сплавов, применяют в электронной и электротехнических отраслях. Из них изготавливают следующие узлы и детали, применяемые:

  • в аппаратуре для коммуникационных линий, оптико – волоконных коммуникациях;
  • соединительных компонентах, контактных группах, пружинных контактах;
  • разъёмах, компонентах микросхем.

В носимом мобильном устройстве связи и персональных компьютерах можно найти компоненты, выполненные из бериллиевых бронз.

Не обошлась без деталей из этого материала и нефтедобывающая промышленность. Из них получают такие детали и узлы:

  • трубы;
  • резьбовые компоненты;
  • инструмент;
  • детали насосов и оборудования, предназначенного для бурения породы.

Химический состав этого материала обеспечивает высокую упругость. То есть, при ударах по изготовленным из этой бронзы деталям не возникают искры, а это очень важно для опасных производств, например, при добыче и транспортировке углеводородов.

Параметры бериллиевых сплавов допускают их использование в авиационной промышленности. Например, в конструкции шасси самолётов и вертолётов, навигационных системах и других комплексах.

Низколегированные сплавы нашли свое место и в сварочном деле. Из них производят электроды, применяемые в аппаратах контактной сварки.

Эта бронза широко применяется в литейном деле. В частности, из этого материала производят отдельные узлы для литьевых машин, стены камер, в которых осуществляется кристаллизация, литейные формы.

Развитие электротехнической промышленности, в том числе приборостроительной отрасли постоянно требует появление новых материалов. Это вызвано ужесточением требований к качеству продукции, ее надежности и длительность эксплуатации. До недавних пор бериллиевая бронза вполне удовлетворяла предъявляемым потребителями требованиям.

Промышленность освоила выпуск трех типов этих сплавов, но наращивание объемов их производства затруднено тем, что бериллий – это достаточно дефицитный материал и вследствии этого он обладает высокой ценой. Все это стало основанием для масштабных исследований в части поисков новых сплавов. В результате на свет появился материал под названием сплав 131. Из его состава исключен марганец, вместо него введен кремний и снижено содержание никеля. Такая замена привела к тому, что произошло кардинальное снижение электросопротивления, при сохранении параметров прочности и временного сопротивления разрыву.

Немного слов в заключение

Из всего вышесказанного можно сделать следующее заключение – на бронзы этого класса практически не оказывает влияние время и коррозия. Более того, с течением времени, бронза не теряет своих механических и других свойств. Уникальные параметры этого материала обеспечивают тепло – и электропроводность не уступающую, чистой меди.

Все это позволяет применять в технически сложных конструкция и можно сказать, что многие товаропроизводители применяют этот материал для повышения качества своей продукции.

Новости

Свойства и применение бериллиевых бронз

Бериллиевые бронзы относятся к классу так называемых дисперсионно упрочняемых сплавов, характерной особенностью которых является зависимость растворимости легирующих компонентов от температуры. При закалке из однофазной области в твердом растворе фиксируется избыточное количество атомов легирующего компонента по сравнению с равновесным состоянием для данной системы. Образовавшийся пересыщенный твердый раствор термодинамически неустойчив и стремится к распаду, процесс активизируется с повышением температуры. Эффект упрочнения определяется дисперсностью выделений образовавшихся при распаде.

Наиболее применяемыми сплавами системы Cu-Be являются сплав БрБ2 (CuBe2, alloy 25, C 17200 по зарубежным спецификациям) содержащий около 2 % бериллия, а также сплавы МНБ (медь-никель-бериллий или CuNi2Be, alloy 11, С17510 по зарубежным спецификациям) и МКБ (медь-кобальт-бериллий или CuСо2Be, alloy 10, С17500 по зарубежным спецификациям),содержащие до 0,8 % бериллия. Сплав БрБ2 также называют высоколегированной бериллиевой бронзой, а сплавы МНБ и МКБ – низколегированной бериллиевой бронзой.

Перечисленные сплавы в закаленном состоянии обладают хорошей пластичностью и технологичностью, а также высокими механическими свойствами в термообработанном (состаренном) состоянии.
Дополнительного повышения уровня механических свойств можно добиться пластической деформацией перед старением (НТМО).

Перечисленные особенности лежат в основе применения бериллиевых бронз в промышленности. Полуфабрикат из бериллиевой бронзы в закаленном или закаленном и деформированном состоянии методами штамповки можно превратить в изделие самой сложной формы: подшипниковую опору, пружинный контакт, разъем, мембрану и, проведя старение, резко повысить прочность и пружинные свойства этого изделия, сохранив его форму.

Области применения бериллиевых бронз

Использование бериллиевых бронз высокоэффективно в тех случаях когда требуется:

  • высокая электропроводность;
  • высокая теплопроводность;
  • высокие прочностные и упругие свойства;
  • высокая коррозионная стойкость;
  • отсутствие у материала способности к искрообразованию при ударах и ферро-магнитных свойств;

Приборостроение. Электроника. Средства связи и коммуникации

Самой большой областью применения медно-бериллиевых сплавов является их использование в электрических и электронных деталях, в первую очередь в пружинных контактах, переключателях, соединителях, а также в оптико-волоконном телекоммуникационном оборудовании, гнездовых разъемах для соединения интегральных схем с печатной платой. Продолжающееся усложнение компьютерной техники и мобильных устройств является важнейшим фактором, ведущим к миниатюризации электронных деталей. Это приводит к повышению спроса на медно-бериллиевые сплавы, т.е. для этих деталей требуется более мелкие, более легкие и более надежные соединители. Коммуникаторы, смардфоны, мобильные телефоны, планшетники, ноутбуки и другие современные мобильные устройства содержат в себе многие ответственные детали из бериллиевой бронзы.

Автомобильная промышленность.

Электронные детали, содержащие медно-бериллиевые сплавы. применяются в компонентах двигательного отсека, электронных схемах системы безопасности автомобиля.

Производство и степень компьютеризации автомобилей растет. Это приводит к увеличению использования бериллиевых бронз в автомобилестроении.

Бурильное оборудование и оборудование нефтедобычи

Здесь используется такие свойства бериллиевых бронз как высокая прочность и антифрикционность, коррозионная стойкость, способность не образовывать искру. Из сплава БрБ2 изготовляют скользящие опоры нефтяных насосов опоры буровых долот, трубы, резьбовые соединения колонны бурильных труб, безискровой вспомогательный инструмент.

Контактная сварка

Благодаря высокой прочности, хорошей жаропрочности и электропроводности, широкое применение в контактной сварке находят электроды и электрододержатели из низколегированной бериллиевой бронзы. Срок службы этих электродов значительно превышает соответствующий показатель электродов из бронз БрХ. и БрХЦр. (хромовые бронзы) при точечной сварке строительной арматуры, проволоки, листовой углеродистой стали, БрНХК (никел-хром-кремниевая бронза), сплава МН2,5КоКр при точечной сварке проволоки, арматуры, стыковой сварке листовой стали, сварке рельс для магистральных железнодорожных путей и т.п.

Литьё металлов и сплавов

Бериллиевые бронзы успешно применяются в плунжерах (поршнях) оборудования для литья под давлением, в т.ч. алюминия, кокилях для литья различных металлов и сплавов, в стенках кристаллизаторов литьевых маши и установок непрерывной разливки сталей. Здесь преимущества бериллиевой бронзы состоят в увеличенном сроке службы и в отсутствии необходимости нанесения дорогостоящего защитного покрытия стенок кристаллизаторов и литейных форм.

Авиастроение. Машиностроение

Бериллиевые бронзы в этих отраслях служат для изготовления ответственных деталей устройств и машин, подвергающиеся совместному воздействию высоких переменных нагрузок, и переменных температур. Так, в современных самолетах бериллиевая бронза используется при изготовлении большинства приборов, а также элементов шасси и т.п.

Это далеко не полный перечень областей применения сплавов системы медь-бериллий. По мере развития промышленности, появляются новые сферы их применения, а также разрабатываются новые бериллийсодержащие сплавы.

Бериллиевая бронза — состав, свойства, марки и применение сплава

Сплав, состоящий из меди и бериллия и подвергнутый термической обработке называют бериллиевой бронзой, обладающей уникальными свойствами, и нашедшей применение в современном смартфоне и телефоне.

1 Сплав бериллия с медью – что он собой представляет?

Бериллиевая бронза – это дисперсионно-упрочняемый сплав системы «медь–бериллий» (Cu–Be) с содержанием бериллия от 1,6 до 3 процентов. Также к таким бронзам причисляют системы «медь–бериллий–кобальт» (сокращенно – МКБ) и «медь–бериллий–никель» (МНБ). МКБ и МНБ могут содержать не более 0,8 процентов бериллия.

Фото бериллиевой бронзы

Особенность бериллийсодержащих бронз заключается в том, что с изменением температуры растворимость легирующих элементов, имеющихся в них, также изменяется. В твердом растворе при закалке из однофазной зоны отмечается образование повышенного числа атомов легирующей добавки (если сравнивать их количество при состоянии равновесия конкретной системы). Получающийся в результате этого процесса твердый пересыщенный раствор с точки зрения термодинамики является неустойчивым.

На фото — бериллийсодержащие бронзы

При малейшем изменении условий он распадается. С увеличением температуры процесс распада становится более интенсивным, с уменьшением – замедляется. Упрочняющий эффект зависит от величины дисперсности выделений, которые формируются при распаде указанного раствора.

Термическая обработка бериллиевой бронзы

Предельная растворимость бериллия в меди в двойной системе Cu-Be при 870°С составляет 2,7% (по массе), и она резко уменьшается с понижением температуры. Это указывает на возможность применения упрочняющей термообработки к меднобериллиевым сплавам. Бериллиевые бронзы являются дисперсионно-твердеющими сплавами, причем эффект упрочнения при термической обработке у них максимальный среди всех сплавов на медной основе. Они подвергаются закалке и последующему старению.

Технологические свойства и режимы обработки бериллиевых бронз

МаркаТемпература, °СОбрабаты­ваемость резанием, %
(ЛС63-3 — 100%)
Линейная
усадка, %
Коэффициент трения
литьягорячей обработкиотжигазакалкистарениясо смазкойбез смазки
1) Низкотемпературный отжиг для повышения упругих характеристик, рекристаллизационный отжиг проводят при температурах 600–700°С.
БрБ21030‑1060700‑800760‑780320201,80,0160,35
БрБ 2,51)1030‑1060700‑800770‑790300
БрБНТ 1,71030‑1060700‑800755‑775300
БрБНТ1,91030‑1060700‑800760‑780320

При термической обработке бериллиевых бронз существенным является выбор температуры нагрева под закалку (Tзак). Ее значение определяет полноту перевода легирующих элементов в твердый раствор и возможность его гомогонизации. С точки зрения указанных факторов, предпочтительно повышение температуры закалки.

Нагрев под закалку выше оптимальной температуры способствует дополнительному пересыщению твердого раствора бериллием (особенно для сплава БрБ2,5) и вакансиями. Оба эти фактора ускоряют распад твердого раствора при последующем старении, но повышение температуры закалки приводит к росту зерен α-твердого раствора, что приводит к понижению пластичности и упругих свойств и ухудшает штампуемость. Для получения мелкого зерна при нагреве до температуры закалки в структуре бронзы должно сохраняться некоторое количество равномерно распределенных включений избыточной β-фазы, которые препятствуют собирательной рекристаллизации α-твердого раствора. Получению мелкозернистой сгруктуры способствует также никель: дисперсные частицы фазы NiBe не растворяются полностью при нагреве под закалку и сдерживают рост зерен α-раствора.

Диапазон температур нагрева под закалку бериллиевых бронз составляет 760—800°С. Выше указанных температур бронзы нагревать не следует из-за опасности роста зерен и ухудшения служебных характеристик сплава. Нагрев под закалку ниже оптимальной температуры уменьшает пересыщение α-твердого раствора бериллием в закаленном сплаве и интенсифицирует прерывистый распад при старении с образованием грубой двухфазной структуры с некогерентным выделением γ-частиц в приграничных участках. Закалка с низких температур стимулирует прерывистый распад особенно сильно при высокотемпературном старении (выше 350°С). Локализованный в приграничных участках прерывистый распад твердого раствора приводит к охрупчиванию сплава.

Свойства бронзы

Если провести сравнение с латунью, то бронза характеризуется более высокой коррозионной стойкостью, прочностью и антифрикционными свойствами. Она довольно стойкая на воздухе, в соленой воде, углекислых растворах и растворах многих органических кислот. Большинство видов бронзы поддаётся сварке и пайке твёрдыми и мягкими припоями.

В зависимости от количества добавок цвет бронзы может быть от красного до белого. Рассмотрим, как легирующие элементы влияют на свойства бронзы. Олово, никель, кремний и алюминий увеличивают прочность, стойкость к коррозии, а также упругие свойства бронз. В сочетании со свинцом, цинком и фосфором повышаются и антифрикционные свойства. Никель и железо значительно измельчают зерно и увеличивают температуру рекристаллизации. Кремний и марганец увеличивают жаростойкость. Хром, цирконий и бериллий повышают жаропрочность сплавов и немного снижают электропроводность.

Давайте вкратце ознакомимся с наиболее часто используемыми видами бронзы.

  • Бериллиевая бронза является лидером по показателю твёрдости среди других сплавов меди. В закалённом состоянии обладает хорошей пластичностью, технологичностью, а в состаренном состоянии – высокими механическими свойствами. Дополнительно повысить уровень механических свойств можно при помощи пластической деформации перед старением. Из бериллиевой бронзы изготавливают пружины, мембраны и инструменты.
  • Алюминиевая бронза характеризуется высокой плотностью, устойчивостью к агрессивным факторам окружающей среды и химическим элементам, хорошей стойкостью к морской воде. Такой вид бронзы поддаётся обработке режущими инструментами. Из неё изготавливают ленты и полосы труб.
  • Кремнецинковая бронза позволяет изготавливать изделия сложных форм, за счёт повышенной текучести в расплавленном состоянии. Такая бронза обладает высокой степенью сопротивления сжатия и не искрит при механических воздействиях.
  • Свинцовистая бронза обладает отличными антифрикционными свойствами, хорошо противостоит ударным нагрузкам, а также отличается высокой прочностью и тугоплавкостью. Применяется она для сильно нагруженных подшипников.
  • Оловянная бронза обладает всеми указанными выше свойствами и является наиболее широко применяемой в современной промышленности.

2 Особые свойства системы медь–бериллий

Самым распространенным представителем бронз интересующего нас класса является сплав БрБ2, который принято называть высоколегированной бронзой (в ней присутствует порядка двух процентов легирующего бериллия). А вот композиции МКБ и МНБ часто именуют низколегированными бериллиевыми сплавами из-за относительно малого содержания в них Ве. Также востребованностью пользуется бронза марки БрВ2,5 (содержание легирующего компонента – 2,5 процента).

Можно выделить такие основные свойства описываемых сплавов:

  • повышенная тепло- и электропроводность, ненамного уступающая теплопроводности меди;
  • отличный уровень противодействия износу, ползучести и усталости;
  • высокий предел упругости;
  • отсутствие искр при ударах;
  • повышенная коррозионная стойкость, показатель твердости и временного сопротивления.

Все эти свойства становятся еще лучше в тех случаях, когда бериллиевые сплавы подвергают закалке и другим видам термообработки (в частности, искусственному старению). Максимальной пластичности описываемые бронзы достигают после закалки, выполняемой при температуре около 775 градусов. В подобном состоянии сплав отличается легкостью деформирования.

Фото бериллиевого сплава с бронзой

Стандартная величина сопротивления (временного) распространенной композиции БрБ2 равняется 450 МПа. Она повышается практически вдвое при пластическом деформировании сплава на 40 %. Механические характеристики систем «медь–бериллий» становятся очень высокими после старения, которое производится следом за процессом закалки (например, сопротивление упомянутого сплава БрБ2 становится равным 1400 МПа).

Важные для промышленности свойства интересующих нас сплавов не ограничиваются указанными характеристиками. Кроме всего прочего, бронзы, в коих присутствует бериллий, обладают отличной теплостойкостью. Изделия из них функционируют без изменения своих возможностей при температурах до +340 °С. А при более высоких температурах (около +500°) механические показатели бериллиевых сплавов идентичны показателям алюминиевых и оловянно-фосфористых композиций при температуре эксплуатации +20°.

Рассматриваемые бронзы подходят для выпуска из них фасонных отливок хорошего качества. Но обычно такие сплавы изготавливаются в виде разнообразных полуфабрикатов, прошедших операцию деформирования (проволока, тонкая лента, полосы и так далее). Бериллиевые сплавы поддаются без особых проблем механической обработке (пайка, сварка, резка), правда, существуют и определенные ограничения на выполнения указанных операций.

На фото — фасонные отливки из бериллиевой бронзы

Так, пайка бронз с бериллием по сравнению с обработкой иных композиций на основе меди считается более трудной.

Бериллиевые сплавы необходимо паять сразу же после того, как была выполнена их зачистка (механическая). При этом используется флюс и специальные серебряные припои. Заметим, что в применяемом флюсе обязательно должны присутствовать фтористые соли. В последние годы широкое распространение получила именно вакуумная пайка бронз под слоем флюса, гарантирующая уникальное качество соединения.

Электродуговая сварка бериллиевых сплавов сейчас почти не используется, что связано с их большим кристаллизационным температурным интервалом. А вот их роликовая, точечная, шовная сварка и сварка в инертной атмосфере освоены достаточно хорошо. Добавим, что особые механические свойства систем «медь–бериллий» не позволяют осуществлять сварочные работы после термической обработки бронз. Об этом обязательно нужно помнить, разрабатывая технологию их сварки.

Где используются сплавы данной группы

Бронзы медно-бериллиевой группы находят широкое применение в тех областях, в которых от деталей требуется их соответствие особым характеристикам. Объясняется это не только их уникальными эксплуатационными свойствами, но и дороговизной их производства.

Наиболее распространенными областями применения сплавов бериллиевой группы, является производство электронных и электрических компонентов:

  • телекоммуникационного оборудования, монтажа оптико-волоконных сетей;
  • соединительных элементов, пружинных контактов;
  • разъемов гнездового типа, элементов интегральных микросхем.

Детали, изготовленные из бронз медно-бериллиевой группы, сегодня можно встретить практически в любом компьютерном устройстве, планшете, смартфоне и сотовом телефоне.

Исключительные антикоррозионные свойства бериллиевых бронз, их прочность и антифрикционные характеристики делают их оптимальным материалом для производства элементов нефтеперерабатывающего оборудования и буровых установок. В частности, из них производят трубы для бурильных установок, элементы резьбовых соединений, опоры для установки насосов, использующихся для перекачки нефти и продуктов ее переработки.

Гаечный ключ взрывобезопасный из бериллиевой бронзы

Свойства сплавов на основе бериллия и меди позволяют применять их для производства следующих изделий.

  • Элементов электронных устройств, двигателей и других систем, использующихся для оснащения современных транспортных средств.
  • Деталей самолетов и различного оборудования, работающих в условиях переменных нагрузок и скачков температур. Бериллиевые бронзы используются для изготовления деталей шасси летательных средств, элементов навигационного оборудования, других ответственных изделий.
  • Электродов и сварочных стержней для оснащения оборудования контактной сварки. Целесообразность использования низколегированных бериллиевых бронз для производства подобной продукции обусловлена их исключительной жаропрочностью и электропроводностью. Важно и то, что электроды, изготовленные из данного материала, характеризуются длительным сроком эксплуатации по причине высокой износостойкости.

Из бронз медно-бериллиевой группы также производят поршни для оснащения оборудования, на котором выполняются операции литья под давлением, стенки камер для кристаллизации литейных заготовок, кокили для литья деталей из различных металлов. Использование бериллиевой бронзы для производства подобной продукции, позволяет не применять дополнительных приспособлений для обеспечения защиты их стенок, испытывающих значительные механические и термические нагрузки.

Области применения и маркировка

Существуют специальные таблицы, в которых приводятся маркировки и описания всех бронзовых сплавов, выпускаемых промышленностью. Однако, даже не обращаясь к подобным таблицам, можно определить тип и химический состав, если знать, как расшифровывается её маркировка.

По простой маркировке можно узнать их состав. Характерным её признаком в обозначении являются буквы «Бр», что означает «Бронза».

Далее за ними следуют буквы, обозначающие, помимо меди, наличие соответствующих компонентов. Эти буквенные обозначения, установленные нормативными документами, следующие: А — алюминий, Б — бериллий, К — кремний, Ж — железо, Н — никель, Мц — марганец, Мг — магний, С — свинец, О — олово, Т — титан, Ф — фосфор, Ц — цинк.

После буквенных обозначений через дефисы идут числа, обозначающие процентное содержание каждого компонента (после меди). А также применяются обозначения, в которых после каждой буквы указывается процентное содержание того или иного компонента. Чтобы узнать содержание меди, нужно из 100% вычесть процентное содержание всех компонентов.

Вот примеры маркировок и их расшифровок: БрО5Ц6С5 — бронзовый сплав, в котором содержание олова составляет 5%, цинка — 6%, свинца — 5%, меди — 84%; БрО3Ц8С4Н1 — содержание олова — 3%, цинка — 8%, свинца — 4%, никеля — 1%, меди — 84%; БрО10Ф1 — содержание олова — 10%, фосфора — 1%, меди — 89%; БрБ2 — содержание бериллия — 2%, меди — 98%; БрАЖМц10−3−1,5 — содержание алюминия — 10%, железа — 3%, марганца — 1,5%, меди — 85,5%; БрАЖН10−4−4 — содержание алюминия — 10%, железа — 4%, никеля — 4%, меди — 82%.

Благодаря своим разнообразным свойствам этот металл находит самое широкое применение в различных сферах. Из него изготавливают следующие изделия:

  • элементы декора (светильники, статуэтки, подсвечники, пепельницы, решётки, украшения перил и прочие);
  • различную фурнитуру (замки, ручки, накладные петли, краны, смесители и прочую сантехнику);
  • детали машин и механизмов (втулки, уплотнители, шестерни, подшипники, части аппаратуры, работающие под водой);
  • детали для высокоточной техники, навигационных приборов, схем автомобилей;
  • многочисленные фитинги (отводы, углы, переходники, муфты, тройники и прочее);
  • в незначительном количестве ювелирные украшения.

Бронза широко применяется в ракетной технике и машиностроении, авиации и судостроении. Из неё делают предметы высокохудожественного искусства для театров, залов и дворцов, отливают памятники и скульптуры.

Благодаря развитию металлургии, этот металл приобретает всё новые и необычные свойства, недоступные кузнецам и металлургам прошлого. Изобретённый древними, сплав продолжает исправно служить человечеству и прогрессу на протяжении многих и многих веков.

Немного слов в заключение

Из всего вышесказанного можно сделать следующее заключение — на бронзы этого класса практически не оказывает влияние время и коррозия. Более того, с течением времени, бронза не теряет своих механических и других свойств. Уникальные параметры этого материала обеспечивают тепло — и электропроводность не уступающую, чистой меди.

Все это позволяет применять в технически сложных конструкция и можно сказать, что многие товаропроизводители применяют этот материал для повышения качества своей продукции.

Легирование бериллиевых бронз

Легирование бериллиевых бронз направлено на улучшение их свойств. В качестве легирующих элементов используют Ni, Co и Ti. Эти элементы подавляют прерывистый распад и замедляют непрерывный. Такое влияние никеля и кобальта связывают с тем, что эти элементы, имеющие меньший атомный радиус, чем медь, уменьшают период решетки α-раствора, что приводит к сохранению когерентности матрицы и выделений, т.е. к отностильной стабилизации γ’-фазы. Кроме того, Ni и Ti могут образовывать соединения типа NiВе, Cu3Тi, которые обеспечивают дополнительное упрочнение.

Бериллиевые бронзы отличаются высоким сопротивлением малым пластическим деформациям из-за сильного торможения дислокаций дисперсными частицами, выделившимися из твердого раствора при старении, а следовательно, они имеют высокий предел упругости. С увеличением этого сопротивления уменьшаются микропластические деформации при заданном напряжении и. следовательно, уменьшается релаксация напряжений. Все это приводит к повышению релаксационной стойкости сплавов — основной характеристики, определяющей свойства упругих элементов.

Бериллиевые бронзы часто подвергают низкотемпературной термомеханической обработке (НТМО), заключающейся в применении пластической деформации между операциями закалки и старения. В этом случае деформация закаленного сплава обеспечивает равномерный распад по всему объему твердого раствора при старении и получение высоких упругих характеристик.

Видео — как делают бронзовые статуэтки


Ссылка на основную публикацию