Фосфаты в аквариуме: нормы и контроль уровня содержания

Форум аквариумистов КМВ

Форум аквариумистов КМВ и все что с ним связанно.

  • Темы без ответов
  • Активные темы
  • Поиск

Нормальные показатели нитрат/фосфатов в травнике

Нормальные показатели нитрат/фосфатов в травнике

Сообщение ANDREY » 08 май 2014, 22:04


Нормальные показатели нитрат/фосфатов в травнике

Сообщение Analog » 08 май 2014, 22:17

Правило контроля пропорции нитрат фосфат.

Первое что нужно знать – закон N-P-K.
Из трех основных макроэлементов азота N, фосфора P и калия K рост растений должен ограничивать только Фосфор. Это закон N-P-K. На практике закон N-P-K приводит к Правилу контроля взаимной пропорции Нитрат:Фосфат в аквариуме. Если нитраты

0, растения прекращают рост (потребление P и CO2 без N невозможно) и выбрасывают через листья не только питательные вещества, а главное – продукты незавершенного метаболизма в виде сахаров , которые и являются основным стимулятором роста водорослей и их спор. В это время водоросли процветают потребляя остаточные количества аммония/нитратов намного быстрее чем растения (водоросли делают это эффективнее растений – т.е. им нужны намного меньшие концентрации). Причем во время дисбаланса чем выше интенсивность освещения и больше остаточная концентрация питательных веществ в воде – тем быстрее прирост биомассы водорослей. Если пропорция PO4:NO3 смещается от оптимального Redfield ratio (атомарное 1:15-30) в сторону NO3 – появляются зеленые водоросли, если в сторону PO4 при почти нулевом NO3 – Cyanobacteria ¬ .

• Если уровень нитрата NO3=0, а фосфаты PO4 >=0,1мг/л, это верный признак недостатка Азота, и нужно увеличить его внесение в аквариум. В противном случае могут появиться сине-зеленые водоросли ¬ или цветение воды. При недостатке азота N восстановление подачи CO 2 до оптимального улучшения роста не даст – Rubisco ¬ будет недостаточно для потребления CO 2 .

То же касается и случаев, когда у растений признаки нехватки того или иного питательного вещества (P, K, Fe, Ca, Mg), хотя вы точно знаете что его достаточно – опять же нужно проверить достаточно ли Азота . Если уровень PO4>0.1мг/л а NO3>5мг/л значит рост растений чем то лимитирован – прежде всего проверьте достаточно ли CO 2 и интенсивность освещения, нет ли признаков недостатка микро- ¬ , особенно Fe.
При небольшом количестве рыб и хорошем росте растений вносить Азот отдельно нет никакой необходимости, достаточно пользоваться стандартным раствором PO4:NO3

1:15 (атомарный Redfield ratio 1:22.5) и все будет в порядке. Если по какой то причине пропорция в аквариуме была нарушена, положение исправляют увеличением подмен воды до двух-трех раз в неделю по 30-50% и переходят на внесение правильного раствора фосфор:азот (т.е. сделать перезагрузку ¬ ). Достаточно просто.

Второе – о Redfield ratio.
“Пропорция Редфилда (Redfield Ratio ¬ ) рассматривает оптимальное соотношение Углерода и Фосфора необходимого для Жизни. Так как потребности в энергии наземных и водных растений одинаковы , оптимальным соотношением C:P является 106C:1P для обоих. Таким образом, полная Пропорция Редфилда (оптимальное соотношение C к N к P) для наземной и водной жизни: на суше – 106C:16N:1P; в воде – 106C:13N:1P (атомарное). Мы уже знаем, что потребность в N на суше больше так как им нужно больше протеинов для создания жесткой конструкции своего организма. Обратной стороной этого является то, что так как потребность в N в водных системах меньше, относительная потребность в P выше потому что фосфор равномерно распределен между водной и наземной формой жизни. Таким образом, в водоемах обычно рост лимитирует именно фосфор P”. ( Tне phosphorus cycle )
Пропорция Редфилда говорит нам оптимальную пропорцию в океанах, где действительно водоросли в определенный сезон могут быть лимитированы по фосфору (при P 4мг/л (не доза, а именно сколько в воде в данный момент времени). Система ADA c большинством питания в субстрате и почти нулевым уровнем PO4 ( PO4:NO3 по массе 1:10-20). И только Estimative Index ¬ настаивает на атомарном P_N=1:7.5. что постоянно является причиной гораздо более быстрой и большей вспышки водорослей в случае дисбаланса – в воде остается слишком много PO4 (>4мг/л стимулирует водоросли!), при замедлении роста растений его концентрация резко увеличивается, и водоросли имеют слишком много питания, причем в это же время растения не могут улучшить рост по причине недостатка N (при усиленных подменах воды и прекращении дозировки удобрений). Подмены воды приходится делать намного больше, процесс растягивается, уход за аквариумом заметно осложняется. Так как Estimative Index – метод с внесением удобрений только в воду , не имея источника азота в грунте и постоянном большом избытке PO4 в воде он является самым нестабильным и неудобным. Это и есть причина перехода любителей с EI на PPS-pro. Особенно ярко выживание растений в среде лимитированной по P (но при достатке N!) иллюстрирует метод освещения Ступенчатым методом ¬ . Как видим – никакого вреда для растений, даже улучшение их здоровья, и полное отсутствие водорослей.
В методике ADA тоже используется подход когда азота всегда в достатке за счет неограниченного запаса N в грунте (т.е. фактически используется PO4_NO3=1:бесконечности), а в воде PO4 всегда около нуля – в воду вносится почти только PO4 (см. состав ¬ ), который сразу же потребляется растениями и поглощается субстратом, и концентрация в воде снова будет около нуля. Всем давно известно что метод ADA дает самое стабильное отсутствие водорослей и простоту ухода за аквариумом из четырех известных ¬ .

Третье что нужно знать – об энзиме ответственном за потребление растениями CO2 – Rubisco activase.
Недостаток азота N гораздо хуже чем фосфора P так как без азота энзим ответственный за потребление CO2 Rubisco ¬ не активируется и потребление CO2 снижается. Например, если начали появляться водоросли от недостаточной дозировки удобрений и/или падения концентрации CO2 мы всегда увеличиваем подмены воды без внесения удобрений что приводит к лимитированию питания растений, азот заканчивается раньше чем фосфор, и потребление CO2 резко снижается даже при его достаточной концентрации в воде. В результате от недостатка CO2 радикально снижается фотосинтез и замедляется рост растений, то есть по системе наносится двойной удар что усиливает вспышку водорослей. Именно в такие периоды PO4:NO3 1:15 лучше чем 1:5, а тем более – если субстрат богат органикой и имеет очень большие запасы N.
Науке точно известно что при достатке азота можно лимитировать рост растений ограничением доступности фосфора без радикального падения темпов роста CO 2 (см. тест Ole Pedersen ¬ ), в то же время недостаток азота N фатален для темпов фотосинтеза, то есть воспышка водорослей будет раньше и сильнее. Нельзя рассматривать вопрос потребления CO2 без учета потребности растений в Азоте N. Важно отметить что ограничение роста растений ограничением PO4 никогда не делается – вместо этого используется меньшая интенсивность освещения, или же более короткий период интенсивного освещения (“метод пика” ¬ ). Питательных веществ и CO 2 должно быть в достатке ВСЕГДА, в воде и/или в субстрате. Просто, как понятно из сказанного выше, периодический временный недостаток P не дает вспышки водорослей, в то время как недостаток N практически гарантирует такой исход.
Пропорция PO4:NO3 вступает в действие только когда растения лимитированы по какому либо элементу, поэтому смещение в сторону азота дает указанные преимущества только когда имеет место недостаточная дозировка удобрений в воду (и/или при отсутствии питания в субстрате), или во время больших подмен воды когда мы избавляемся от водорослей и вынужденно лимитируем растения чтобы уменьшить прирост биомассы водорослей. Когда растения не лимитированы пропорция особой роли не играет – 1:15 можно использовать как страховку, а 1:5 вреда не принесет. (см. мнение Tom Barr ) Недостаток питания для растений от недостаточной/непостоянной дозировки гораздо более весомая причина роста водорослей чем сама пропорция, поэтому в первую очередь следует обеспечить достаточно PO4 и NO3, причем неважно в воде или в грунте, а потом уже думать о пропорции! Негативное влияние заниженной пропорции PO4:NO3 проявляется только когда имеется недостаток дозировки и нет питания в субстрате (грунт изначально без органики, еще не набрал запаса питания в молодом аквариуме, уже исчерпал свои запасы, или же отсутствуют нормальные условия для разложения органики в грунте и питания корней). С 1:15 когда от боязни получить водоросли/случайно/недостатка времени вносят слишком мало PO4:NO3, лимитирование растений по фосфору P имеет гораздо менее плачевные последствия чем недостаток азота N.
При внесении удобрений только в воду (бедный субстрат), если дозировка достаточна – пропорция особой роли не играет и не является прямой причиной появления водорослей, но все же 1:15-25 выгодна когда будет дисбаланс – это определенная страховка и “хорошая привычка” дающая немного больше стабильности без необходимости беспокоиться о том какой у вас субстрат и достаточно ли в нем еще питания, снизить воздействие временных падений концентрации CO2 на систему упростив контроль за его подачей. (подробнее смотри в разделе Ограничение роста растений ¬ ).
Если используется метод ADA с богатым орагникой субстратом, в воду вносят почти только PO4 (PO4:NO3

1:1.695 для Lights и 1:1.915 для Shade). Азота в субстрате всегда достаточно, т.е. используется пропорция 1:бесконечности.

Азот (нитрат) и фосфор (фосфат) в аквариумных растениях – ключ к новому подходу внесения удобрений

Этот текст опубликован для тех,
кому не удалось посетить мою лекцию
на выставке AquaTerraShow 2018

Азот и фосфор в аквариумных растениях — в этом главная суть лекции. Что в растениях внутри. Сколько азота и фосфора в растениях. Какое их соотношение, азота и фосфора (или нитрата и фосфата)? И самое главное — это соотношение одинаково для всех растений, или же нет? Это очень важные вопросы, так как именно от этого зависит то, какое им нужно питание, какие им нужны удобрения. Для всех видов аквариумных растений нужны одинаковые удобрения, или же для каждого вида нужны разные удобрения? Давайте разберемся.

Когда речь заходит о соотношении азота и фосфора, многие аквариумисты вспоминают известное соотношение Редфильда. Что вообще такое соотношение Редфильда? Это ученые взяли огромное количество разных представителей фитопланктона в океане и проанализировали соотношение углерода азота и фосфора в каждом из них. Потом вывели некую среднюю величину для всех этих организмов. Это одна цифра. Как средняя температура пациентов по больнице. Недавно это было 16/1, сейчас это 14/1. Эта средняя величина может немного отличаться для водных растений, или наземных. В растительной аквариумистике это соотношение почему-то очень крепко прижилось и принимается за неоспоримую истину для создания идеального растительного аквариума. Также следует отметить, что в растительной аквариумистике обычно используют пересчитанную величину на нитрат/фосфат. Потому что в аквариумистике чаще оперируют не азотами и фосфорами, а нитратами и фосфатами. Именно нитраты и фосфаты аквариумист может как-то посчитать, протестировать. Растения могут потреблять азот и в другой форме (в форме аммония, например), но это целая отдельная тема.
Соотношение Редфильда нитрат/фосфат

10/1.
Коэффициент пересчета очень простой:
(Атомарное соотношение азот/фосфор)/1.5=Соотношение нитрат/фосфат.

Влияет ли соотношение нитрата и фосфата на рост водорослей в аквариуме?

Считается что появление тех или иных водорослей связано именно с отклонением от соотношения Редфильда. Можно прочитать на некоторых сайтах, что если отклонение в сторону нитратов — тогда появляются зеленые водоросли. Если отклонение в сторону фосфатов — появятся сине-зеленые водоросли. Если соотношение Редфильда соблюдается, тогда у вас будет чистейший аквариум с растениями и без водорослей.
Но тут очевидное противоречие. Для разных нежелательных водорослей нужно разные соотношения нитратов и фосфатов. Каким-то водорослям нужно больше нитрата, каким-то фосфатов. А вот для всех видов аквариумных растений якобы нужно одно единственное соотношение нитрата и фосфата.
Где логика? А логики нет. На самом деле разным видам растений тоже нужно разное соотношение нитрата и фосфата, как и водорослям.

Специально чтобы подтвердить это мы провели ряд анализов разных растений из аквариумов. Первый пример — любимая многими аквариумистами Бликса японская имеет в своем составе соотношение нитрата к фосфату 5/1. А соотношение Редфильда 10/1. Как вам такое отклонение? В два раза.
Теперь представьте себе у вас аквариум почти весь засажен этим красивейшим растением. И вот вы прочитали, что в среднем все растения потребляют нитраты и фосфаты в соотношении 10/1 и начинаете вносить удобрения с этим соотношением. Что произойдет? Бликсе будет не хватать фосфатов. Она будет мельчать и медленно расти.

Другой не менее интересный пример. Самое популярное растение для создания зеленого коврика — Хемиантус Куба. Мы тоже сделали его анализ. Соотношение нитрата к фосфату в нем аж 30/1. Отклонение от соотношения Редфильда в три раза, и в другую сторону. Видите какая огромная разница. 5/1 — Бликса, 10/1 соотношение Редфильда и 30/1 у Хемиантуса Кубы.
Какое нужно удобрение для аквариума, в котором растет только Хемиантус Куба?
Очевидно, что в нем не должно быть много фосфатов как в случае с Бликсой. И даже используя удобрение с соотношением нитратов и фосфатов по Редфилду в таком аквариуме будет оставаться много лишних фосфатов, чем с радостью воспользуются водоросли. Зачастую это зеленый налет на камнях, потому что такие аквариумы обычно оформляются в стиле Ивагуми.

Если взять длинностебельные виды, среди них тоже есть большой разброс в предпочтениях. Вот Людвигия бревипес любит больше фосфаты. Она потребляет нитраты и фосфаты в соотношении 7/1. А вот Дидиплис больше любит нитраты. У него соотношение нитратов к фосфатам 16/1.
Мхи. На примере Фиссиденса видно, что вот ему как раз соотношение Редфильда нравится. Он имеет очень близкое к нему соотношение нитратов и фосфатов 11/1.
Криптокорина беккета, почти как куба, нуждается лишь в небольшом количестве фосфатов. У нее соотношение 23/1.

Мы проанализировали целый список растений. По предпочтениям друг от друга они могут сильно отличаться. Какое-то растение любит больше нитраты, какое-то больше фосфаты. Отличие может быть в разы. Но среднее соотношение нитратов к фосфатам очень близко к соотношению Редфильда. По нашему списку это 14/1.
На что это влияет? Для иллюстрации я хочу привести один пример из жизни.

На что действительно влияет соотношение нитрата к фосфату? Эксперимент.

Этот случай, который произошел в 2012 году, как раз и натолкнул нас на проведение исследования составов растений.
В то время мы реорганизовывали наш экспериментальный питомник аквариумных растений. И решили для соблюдения порядка в нем в каждом аквариуме содержать всего один или два вида растений. В одном аквариуме Бликса, во втором – Лялиопсис, в третьем – Гидрокотила, в четвертом другой вид и так далее. И конечно же мы в них всех использовали наше удобрение AQUAYER Удо Ермолаева МАКРО+ и МИКРО+. Один комплект удобрений на всех. И что вы думаете? Многие растения плохо росли. Как же так? Это же наше удобрение, которые мы проверяли на массе разных аквариумов и оно никогда не подводило. А тут такая проблема. Почему?

Начали разбираться. Что мы сделали? Мы взяли все эти виды и обратно смешали, чтобы в одном аквариуме было не один-два вида, а несколько видов. Чем больше, тем лучше. Больше ничего не меняли. Те же удобрения, тоже освещение, грунт, все тоже самое. Только сделали большое разнообразие видов в одном аквариуме. И все стало замечательно. Все растения росли и имели отличный вид, даже те, которые раньше не росли в одиночестве.

Почему так произошло? Потому что соотношение 10/1 работает тогда, когда в аквариуме несколько или много разных видов растений. Когда их много разных в одном аквариуме, они друг друга компенсируют. Бликса с лялиопсисом забрали много фосфата и оставили в воде много нитрата, а этот избыток нитрата забрала куба с криптокориной. А вот когда же в аквариуме всего один или два вида растений, компенсировать некому и нужно подбирать соотношение нитрата и фосфата под эти растения. И это может быть и 5/1, и 20/1.

Фосфатов нужно немного больше

Еще один очень важный момент. В ходе наших наблюдений, оказалось что в условиях аквариума фосфатов нужно немного больше чем их требуют растения. Зачем? Кому еще в аквариуме нужен фосфат, кроме растений?
Дело в том, что фосфаты могут связываться осажденным железом. Известно, что железо очень нестойкое в условиях аквариума и быстро осаждается в иле даже если его вносится с очень сильными хелаторами. Железо поэтому и льют для растений много. Кстати, мы также проводили анализ растений и на содержание железа. Так вот, среднее соотношение нитрат/железо в растениях по упомянутому списку 650/1! А соотношение нитрат/железо в системах удобрений различных производителей колеблется от 100/1 до 20/1. Избыток железа в удобрениях по сравнению с тем сколько железа достигает клеток растений просто огромный. И весь этот избыток выпадает в ил. Только не подумайте, что если вы будете лить железо в соотношении нитрат/фосфат 650/1 у вас будут расти растения. Нет, конечно. Они просто погибнут, потому что выпадения огромной доли железа в ил неизбежно в условиях аквариума.
Так вот ил с железом задерживается в грунте, или во внешнем фильтре и частично поглощает фосфаты. Только если в грунте связанные фосфаты доступны корням растений, то в фильтре они не доступны. Потом фильтр чистится и вместе с илом фосфат с железом безвозвратно покидает аквариум.

Так сколько нужно вносить нитрата и фосфата для разных видов растений?

С учетом потери некоторой доли фосфата по описанному выше механизму, наши рекомендации по внесению нитрата и фосфата для каждого вида растения выглядят так:

Такой подход не новый. Например, агрокультуры, для которых разрабатывают специальные удобрения не только для каждого отдельного вида, а и для разных этапов роста растений. Но аквариум это не ферма и должен в первую очередь приносить удовольствие. Поэтому аквариумисту сложно представить что он должен вносить для каждого растения специальное удобрение. К тому же в аквариуме может быть набор разных растений и этот набор может со временем меняться.
Решением является удобрение, которое может обеспечить вариабельность состава. И таким простым решением стало удобрение AQUAYER Смарт МАКРО. Оно содержит удобрение Фосфат и удобрение Нитрат, и самое главное — специальный мерный флакон, который и позволяет с легкостью менять соотношения нитрат/фосфат. Если нужно приготовить макроудобрение с соотношением нитрата к фосфату 5/1, доливаете Нитрат до метки «5/1», потом в этот же мерный флакон доливаете до красной метки Фосфат. Все! Макроудобрение с соотношением 5/1 готово. Никаких весов не нужно, никаких расчетов концентраций. Это процедура занимает 5 минут. Причем это не нудная процедура расчета, в которой можно ошибиться, а интересное смешивание синей жидкости с красной жидкостью.
Если нужно удобрение с соотношением 20/1, проделывается все тоже самое, только нужно долить раствор нитрата до метки «20/1». Для каждого соотношения есть соответствующая метка на шкале.

Смарт МАКРО отрывает огромный простор для экспериментов. Можно с легкостью готовить макроудобрение самостоятельно, каждый раз новое. Не нужно кого-то просить, знакомого химика на форуме, чтобы он приготовил удобрение с нужным соотношением нитрата к фосфату.
Если вы заметили по растениям в аквариуме, что им не подходит соотношение 5/1, вы просто готовите макроудобрение с соотношением, например, 7/1. Наблюдаете. Если для вашего набора растений подошло это соотношение, значит вы нашли идеальное удобрение для них. Если нет, можете двигаться дальше, менять соотношение. Ведь это легко.

Как правильно искать идеальное соотношение нитрат/фосфат

Теперь несколько рекомендаций как правильно вести эксперименты и как правильно оценить — подходит ли для вашего аквариума то или иное соотношение.
Самый главный показатель того, подходить ли выбранное соотношение нитрата и фосфата для ваших растений — это внешний вид растений и их рост. И в этой оценке нельзя спешить. Нужно вносить удобрение минимум две недели. И потом смотреть — нравится ли вам как растут растения или нет. Если что-то не так, тогда меняете соотношение.

Ни в коем случае нельзя оценивать эффект приготовленного вами удобрения по тестам на нитрат и фосфат. Это очень распространенная ошибка. И многие действительно так и делают. Почему-то в Интернет-сообществе аквариумистов принято считать что соотношение нитрат/фосфат 10/1 должно быть в аквариумной воде. Неправильно! 10/1 это среднее соотношение нитрат/фосфат в удобрениях, которые вы вносите, а не в аквариумной воде.
Ведь это противоречит логике. Невозможно вносить и удобрения в соотношении 10/1 и иметь воду в аквариуме постоянно с этим соотношением. Потому что фосфаты, помните, будут частично связываться илом.
На практике аквариумисты, которые стремятся получить соотношение нитрат/фосфат 10/1 в воде вынуждены добавлять много фосфата дополнительно. При этом они часто забывают о том, какое же соотношение нитрат/фосфат в итоге вносится в аквариум, ведь на первый план ставится то, что покажут тесты.

А правильный подход — это когда вы изначально знаете соотношение нитрата к фосфату в удобрении, обязательно наблюдаете за растениями когда используете это соотношение и оцениваете через две недели нужно ли менять это соотношение или использовать дальше. Тесты тут не нужны. Они не дают полной картины доступности питательных элементов для растений в аквариуме, так как показывают только то что есть в воде. Что есть в грунте, они уже не покажут.

Правильно — соотношение нитрат/фосфат в удобрениях — это постоянная, а соотношение нитрат/фосфат в воде — это переменная.
Неправильно — соотношение нитрат/фосфат в воде аквариума — это постоянная, а соотношение нитрат/фосфат в удобрениях — это переменная.
Менять соотношение нитрата к фосфату в удобрении нужно только тогда, когда вы ищите идеальное соотношение.

Еще у вас может возникнуть вопрос — с какого соотношения нитрата к фосфату нужно начинать поиск своего идеального удобрения. Воспользуйтесь таблицей выше. Например, если у вас в аквариуме допустим много стаурогина, тогда лучше начать с соотношения 15/1.
Таблица не содержит всех возможных видов растений, их сотни, и если вдруг вы не нашли интересующий вид, лучше начать с соотношения 10/1, как в стандартном AQUAYER Удо Ермолаева МАКРО+. И дальше, если необходимо, идти или в сторону увеличения нитратов, или в сторону увеличения фосфатов.

МАКРОЭЛЕМЕНТЫ

Азот (N), фосфор (P) и калий (К) – это те макроэлементы, которые мы вносим в аквариум в форме жидких удобрений, если хотим добиться высокого качества растений.

Зачастую просто подобрать нужную дозировку, ориентируясь на рекомендации инструкции написанной на упаковке, недостаточно. Что-то идёт не так и приходится какой-либо из этих элементов вносить дополнительно.

Например, Вам удалось установить хорошее освещение аквариума, наладить подачу углекислоты, установив рН в нейтральном диапазоне (6,5-7,5), а водоросли всё равно растут. В этом случае в первую очередь надо разбираться с количеством азота (N) и фосфора (P).

Часто бывает такая ситуация: аквариумист-травник «вырос» до подключения установки СО2, усилил свет, добился нейтрального рН, добавляет хорошее комплексное удобрение, а растения вместо ожидаемого бурного роста через пару недель раз и перестали расти, уступив своё первенство водорослям. Что тут происходит?

Без тестов нам не разобраться. Придётся покупать и измерять параметры воды. А именно, сначала убедиться, что рН в нейтральном диапазоне. Иначе дальше двигаться нет смысла: будет питательных элементов достаточно, а насколько эффективно они усваиваются неизвестно. Следующим шагом, после коррекции рН на нужный уровень будет измерение азота (N) и фосфора (P). Для оптимального роста растений и избавления от водорослей нам не нужен ни недостаток, ни избыток.

Оба эти элемента взаимосвязаны. Один без другого не усваивается. Но если временный недостаток фосфора (Р) растение может перенести (оно его накапливает и затем использует из своих запасов), то недостаток азота ( N ) фатален. Без него растение с трудом усваивает углерод (С) и, соответственно, задыхаясь, не может потребить и остальные элементы. Растения, не получив своё, испытывают стресс и начинают отдавать в воду кроме всего прочего принятый ранее фосфор (P) с азотом (N) и аммоний (NH4+), провоцируя ещё больший рост водорослей. Аммоний (NH4+), кстати, тот ещё провокатор. Он тоже одна из основных причин появления водорослей.

О количестве рыб

Почему нам постоянно приходится корректировать уже точно выверенные удобрения? Почему недостаточно послушно выполнять рекомендации, прочитанные на упаковке? Тут нашу «малину» портят рыбы. Дело в том, что корм является основным источником макроэлементов. Это хорошо, но беда в том, что не ясно в каких пропорциях эти элементы в нём присутствуют. Обычно в качественных сухих кормах с этим всё в порядке. Мы же всегда делаем рыбам лучше: крутим фарши, подкармливаем морепродуктами и пр. Поэтому на практике часто складывается перекос в сторону фосфатов (PO4).

Чем больше обитателей аквариума и обильнее кормление рыбок, тем сложнее аквариумисту справиться с задачей правильной подкормки растений. Плюс с поступлением большого количества корма образуется избыток аммония (NH4+). От избытка аммония (NH4+) избавляться приходится хорошей биофильтрацией (см. фильтрация травника), либо массовыми подменами воды, бывает и не один раз в неделю.

Баланс азота (N) и фосфора (P)

К широко используемым в удобрениях макроэлементам относятся азот (N), фосфор (P) и калий (K). Так удобрения и маркируются – NPK. По относительному составу элементов. Например, популярное сельскохозяйственное удобрение, так называемая нитроаммофоска, бывает с характеристиками N:P:K = 8:24:24 и N:P:K = 16:16:16

Но у нас не навоз-колхоз. На почве важен только рост растений, а нам нужно ещё учитывать излишки элементов, которые достаются водорослям. В наших условиях необходимое соотношение N:P:K = 10:1:11. Цифры тут реальные. Означают миллиграммы на литр воды, точнее, атомарное соотношение по массе. Причём решающим соотношением для избавления от водорослей является нитрат:фосфат. Нитрата (NO3) всегда должно быть в 10 раз больше чем фосфата (PO4). Одно без другого просто не усваивается, а излишки остаются на радость водорослям.

Минимальное количество еженедельно вносимых нитратов и фосфатов 10:1 годится для аквариумов без подачи углекислоты; 30:3 норма для благополучного аквариума с быстрорастущими растениями; а 50:5 максимально допустимое значение, которое переносят рыбы. Т.е. при еженедельной подмене воды добиваемся, контролируя тестами, этих значений так чтобы питания хватило на неделю. Если не лень, разбиваем это количество на несколько порций и добавляем в течение недели.

Через неделю, когда наступает время очередной замены воды, снова делаем тесты, чтобы увидеть, в каких пропорциях поглощались питательные вещества. И снова корректируем количество вносимых удобрений. На первых этапах придётся сделать промежуточные тесты среди недели между подменами воды. Так будет ясна полная картина потребления удобрений.

О важности азота (N) в формуле N-P-K

Недостаток одного элемента всегда лимитирует потребление остальных. Из трёх основных макроэлементов азота (N), фосфора (P) и калия (K) допустимо, чтобы лимитирующим фактором был только фосфор (P).

Азот (N) входит в состав аммония (NH4+), нитрита (NO2) и нитрата (NO3). В силу ничтожно малых количеств аммония (NH4+) и нитрита (NO2) в здоровом аквариуме, мы будем учитывать только нитрат (NO3).

При отсутствии азота (N) энзим активирующий потребление СО2 не срабатывает и углерод растениями резко перестаёт усваиваться. Прекращается фотосинтез, рост и потребление всех питательных веществ. По этой причине недостаток азота (N) намного хуже, чем нехватка фосфора (P). При нехватке фосфатов (PO4) водоросли появляются не сразу и постепенно. При нехватке нитратов (NO3) мы получим вспышку водорослей. Поэтому гораздо проще, когда лимитирующим фактором роста растений становиться не азот (N), а фосфор (P). В таком случае отклонение от пропорции N:P = 10:1 лучше сделать в сторону нитрата (NO3) N:P = 15:1. Хотя фосфором (P) тоже не стоит ограничивать рост растений. Лучше делать это сокращением интенсивности или продолжительности освещения. Питательных элементов всегда должно хватать. Речь идёт о том, кратковременный дефицит какого элемента нам принесёт больше проблем.

Пока в воде присутствуют оба элемента и азот и фосфор, не важно, в какой они пропорции. Правило N-P-K вступает в силу в ситуации, когда рост растения лимитирован по одному из элементов. Мы рассчитываем дозировки с запасом до следующей подмены воды. А так как растениям азот важнее, можно перестраховаться и сделать соотношение с запасом прочности N:P = 20-25:1 Такое соотношение особенно актуально, если не используется питательный грунт и растениям приходится полагаться только на питание из воды.

Пропорция Редфилда (Redfield ratio, RR-ratio)

Alfred C. Redfield (1890-1983), американский учёный, исследовал зоопланктон и морские водоросли. В 1934 году он выяснил что атомарное соотношение углерод-азот-фосфор в составе зоопланктона соответствует С:N:P = 106:16:1 во всех океанах с небольшими отклонениями.

С:N:P = 106:16:1 это атомарное соотношение. Нам же интересно атомарное соотношение по массе в веществах нитрат (NO3) и фосфат (PO4). Если перевести атомарный Redfield ratio N:P = 16:1 в соотношение N:P по массе, получим N:P = 7,2:1. А в переводе PO4:NO3 по массе получится как раз та пропорция, которую мы используем 1:10 (если точно, 1:10.4). Допустимый диапазон атомарного Redfield Ratio (RRatomic) равен 1:15-30. Что соответствует по массе PO4:NO3 = 1:

Эти соотношения были исследованы далее и привели к выводам, что при избытке азота по отношению к фосфору, будут расти зелёные водоросли, а при избытке фосфора по отношению к азоту – сине-зелёные водоросли.

Фосфат (PO4) в аквариуме

Основные естественные источники фосфата в аквариуме: корм, выделения рыб и отмирающие растения.

Фосфат не усваивается растениями в нерастворённом виде. Это не является большой помехой, т.к. он способен быстро растворяться из разлагающейся органики в воду. Он также быстро усваивается растениями. Внесённая доза 5 мг/л довольно быстро усваивается про запас, оставляя концентрацию в воде около 0,1 мг/л или того меньше, и затем может использоваться растением из своих источников при непродолжительном отсутствии фосфата (PO4) в воде. Это не значит, что надо вносить большие дозировки или добавлять фосфат между подменами воды. Это означает, что всё сделано верно: растениям обеспечены условия для хорошего роста. Так не остаётся шансов водорослям.

Растения не потребляют органически связанный фосфат (PO4) пока он не будет переработан бактериями. Этот процесс происходит несколько медленно для того, чтобы успеть удовлетворить потребность в питании быстрорастущих растений в благополучном аквариуме. Поэтому фосфат необходимо вносить дополнительно.

В качестве источника фосфата используют монофосфат калия (KH2PO4). Его можно купить в садовых магазинах. Состав монофосфата калия (KH2PO4) входит PO4=69.8%, P=22.8%, K=28.7%

Признаки недостатка фосфата (PO4): скручивание побегов и листьев, потемнение молодых листьев, на старых листьях появляются красновато-бурые или бурые пятна.

Азот (N) в аквариуме

Возможно это самый важный элемент в питании растений. Азот (N) является стимулятором потребления углекислоты (СО2). Без наличия азота (N) в воде рост растений прекращается, провоцируется вспышка водорослей. Есть смысл делать дозировку азота (N) при добавлении удобрений с запасом во избежание ситуации, когда этот элемент иссякнет.

Признаки недостатка азота (N): замедление скорости роста, пожелтение листьев начинается с краёв и кончиков, отмирание старых листьев, почернение участков листьев папоротников.

Доступные источники азота (N): нитрат калия (KNO3), нитрат аммония (NH4NO3), сульфат аммония (NH4SO4) и амидный азот (NH2).

Нитрат калия (KNO3), он же калиевая селитра, калийная селитра, азотнокислый калий, индийская селитра и др., самый доступный и самый дешёвый вариант. Не вызывает рост водорослей.

Нитрат аммония (NH4NO3), он же аммиачная селитра, лучше использовать при рН>6,5. Дело в том, что в этом случае растения легче усваивают азот из аммония (NH4+), а не из нитрата (NO3). Не очень удобный вариант, т.к. аммоний (NH4+) – основной стимулятор роста водорослей. В состав нитрата аммония (NH4NO3), входят NO3 77,5%, NH4 22,5%. Азота (N) содержится в нём 33%. Если внести его в расчёте по нитрату 20 мг/л, концентрация аммония будет 4,5 мг/л т.е. близка к токсичному порогу (5 мг/л). Выходит, нитрат аммония (NH4NO3) нужно применять в аквариуме без рыб, или почти без рыб. И ещё один подводный камень. Чего будет больше после обработки бактериями, аммиака или аммония зависит от жёсткости воды. При GH >12 аммиак вносить нельзя. Он будет в токсичном количестве. При такой жёсткости воды лучше использовать сульфат аммония (NH4SO4).

Ещё один удачный источник азота – амидный азот (NH2). Он не провоцирует водоросли и легко усваивается растениями.

Амидный азот (NH2)

Вместо аммония (NH4+) в качестве источника азота (N) лучше использовать амидный азот (NH2). Его неоспоримое преимущество в том, что в отличие от аммония (NH4+), избыток которого является одной из частых причин возникновения водорослей, азот (N) в этой форме для водорослей недоступен.

Амидный азот (NH2) входит в состав многих соединений, в том числе и аминокислот: глутамат, аспарин, аргинин, аланин, гистидин и др. Эти вещества содержат готовые к употреблению растениями азотные соединения NO3, NH4, NH3, NH2, что облегчает их потребление.

Амидный азот (NH2) довольно популярен, широко используется в сельскохозяйственных удобрениях и удобрениях для гидропоники.

Некоторые аквариумные удобрения тоже делают с амидным азотом (NH2). Так компания ADA использует способность растений извлекать амидный азот (NH2) из аминокислот и включает их в состав ADA Green Gain и ADA Efficient Complex Acid.

Аммоний (NH4+)

Аммоний (NH4+) играет важную роль в метаболизме растений. Он ускоряет потребление азота (N) из нитрата (NO3). Но вносить в аквариум дополнительно его нужно очень осторожно. Концентрация, превышающая всего лишь 0.02мг/л способна остановить потребление нитрата (NO3). На практике он не вноситься. Разве что в аквариум без рыб. Источником аммония (NH4+) в аквариуме являются органические разложения, корм и экскременты рыб.

При использовании питательного грунта, такого как ADA, или внесении в аквариум дополнительной дозировки аммония (NH4+) важно использовать внешний фильтр для эффективной обработки аммония (NH4+) бактериями в случае случайной передозировки.

Эффективность биофильтрации снижается при заиливании фильтрующих элементов. При возникновении водорослей, если все параметры в норме, означает, что нужно чистить фильтр.

Также должно быть достаточно много растений и они должны быть обеспечены хорошим светом, СО2 и питанием всеми микро- и макроэлементами. И всё должно быть в таком балансе, установить который получается с опытом.

Ещё при внесении аммония (NH4+) нужно учесть, что он, так же как и аммиак, может быть в водопроводной воде.

Проще еженедельно вносить в качестве источника азота (N) нитрат калия (KNO3) 10-30мг/л и не заморачиваться на аммоний (NH4+).

Калий (К) в аквариуме

Калий (К) обязательно должен быть в аквариумной воде, недельная норма которого 10-20 мг/л. Без него не происходит фотосинтеза.

Он есть в кормах. Корм для рыб, как отмечалось выше, основной источник макроэлементов. При создании растениям оптимальных условий для роста, на одном корме далеко не уедешь. Калия будет недостаточно.

Дополнительно вносится обычно в качестве сульфата калия (K2SO4), он же сернокислый калий.

Если калий (К) добавлять в состве солей нитрата калия (KNO3) и фосфата калия (KH2PO4), то надо учитывать количество нитратов (NO3) с фосфатами (PO4).

Так если азот (N) и фосфор (P) добавлять в аквариум в составе нитрата калия (KNO3) и фосфата калия (KH2PO4), калий (K) дополнительно не добавляется. Его и так будет достаточно.

На практике калий (К) нет необходимости измерять тестами и вносить его точное количество. Тем более в продаже и тестов для измерения калия (К) в пресной воде нет. Достаточно корректировать еженедельные дозировки, ориентируясь по состоянию растений.

Признаки недостатка калия (К): появление маленьких дырочек на листьях, медленный рост растений и, как следствие, появление проблем с водорослями.

Эти проблемы могут возникнуть даже при внесении калия (К) в достаточном количестве. Дело в том, что его антагонистом является натрий (Na), который есть в водопроводной воде. Натрий (Na) блокирует потребление калия (К). Ничего страшного в этом нет. Просто его всегда должно быть больше чем натрия (Na). Нужно увеличить дозировку калия (К), тогда он будет доступен растениям.

В водопроводной воде концентрация натрия (Na) обычно колеблется в диапазоне от 5 до 50 мг/л. Запросто может и больше, ведь предельно допустимая концентрация – 200 мг/л.

Часто дырки на листьях появляются во время запуска аквариума, когда растения ещё не прижились. В это время, особенно в первые две недели, никакие удобрения вносить нельзя, а калий (К), при появлении признаков его недостатка – желательно.

Не стоит увлекаться простотой применения калия (К). Его передозировка, в свою очередь, блокирует потребление азота (N) и кальция (Ca).

Признаки нехватки кальция (Ca): радикулит (искривление и уменьшение в размерах каждого нового листа), побеление молодых листьев и дальнейшее их отмирание.

Основные параметры воды в аквариуме

Вопрос о том, какой должна быть вода в резервуаре, волнует как начинающих, так и опытных аквариумистов.

Та вода, которая течет из крана, представляет собой не двухкомпонентную формулу, которую изучали в школе, а сложный раствор с множеством примесей.

В данной статье мы подробно рассмотрим основные параметры для воды в аквариуме и определим идеальный состав.

Основные показатели

Для создания биологического равновесия в аквариуме необходимо внимательно следить за качественными параметрами воды. Ниже мы рассмотрим их, а также приведем ряд показателей, которые важно соблюдать для комфортной жизни подводных обитателей.

Кислотность (рН)

Самый главный параметр – кислотность воды в вашем аквариуме (рН). Он дает представление о соотношении оснований и кислот в жидкости. В качестве основания выступают карбонаты. Их количество в воде отображает карбонатная жесткость.

Данный показатель обычно стабилен. А вот концентрация угольной кислоты, которая образуется при растворении углекислого газа (СО2), может изменяться. Поэтому основное влияние на кислотность воды оказывает концентрация в ней СО2.

Чем больше в воде углекислого газа, тем меньше рН. Также стоит обратить внимание на то, что со временем в воде появляются дополнительные кислоты, образованные из-за естественных биологических процессов. Поэтому, даже если параметр углекислого газа будет в норме, то кислотность воды в резервуаре все равно может уменьшаться.

На что влияет рН?

Прежде всего, на жизнь рыбок и их комфортное существование. Стоит отметить, что обитатели аквариума предпочитают жизнь в среде со стабильной кислотностью. В случае естественных условий, рыбка может просто переплыть в другое место, если рН изменится, в замкнутой же системе она вынуждена существовать в строго определенных условиях.

Если колебания не резкие, то жизни здоровых подводных обитателей ничего не угрожает, в силу их способности к адаптации. В ином случае, смертельный исход неизбежен. Поэтому важно следить за данным параметром.

Нормальными показателями рН по шкале Серенсена являются значения от 5 до 10, однако для комфортной жизни рыбок этот параметр должен варьироваться от 6 до 8 единиц.

Минимальным показателем, к которому могут адаптироваться рыбы является 4,5 единиц, максимальным 10, так как в щелочной воде велика вероятность возникновения смертельно опасного аммиака. Если данный параметр отклонился в большую или меньшую сторону, то велика вероятность смерти вашего питомца.

Как проверить в домашних условиях?

Для того, чтобы измерить рН необходимо в специализированном магазине приобрести либо тесты, либо прибор-измеритель, либо контроллер для аквариума.

Первый вариант является наиболее бюджетным, однако не самым удобным. Прибор после его калибровки позволяет получить наиболее точные результаты. Цена варьирует от тысячи рублей за самую простую модель до десяти тысяч за приборы с дополнительными функциями. Принцип действия у двух тестов примерно одинаковый, вы берете пробу воды с аквариума и погружаете в нее тест. В зависимости от изменения окраса (бумажные тесты) или появления на табло цифры вы сможете узнать уровень этого параметра.

pH контроллер для аквариума дает не только количественный показатель для ознакомления, но и автоматически регулирует его. Их принцип действия основан на точной дозированной подаче углекислоты в воду.

Как подкислить?

Чтобы повысить рН добавьте в аквариумную жидкость немного обычной соды. Пропорция составляется из расчета пять грамм порошка соды на сто литров жидкости. Еще один способ – добавление солей натрия или калия. Также можно приобрести специальные препараты в зоомагазине, задача которых нормализация кислотности.

Как понизить?

Чтобы понизить кислотность можно использовать торф темно-коричневого цвета. Однако предварительно его нужно протестировать. Для этого положите торф в емкость с жидкостью и периодически в течение одних суток проверяйте уровень кислотности. Если он повышен, то этот торф вам подходит. Прежде чем отправлять его в аквариум, проварите вещество в дистиллированной воде и понемногу добавляйте получившейся раствор в аквариум, постоянно делая замеры.

Окисляемость

Другое название окисляемости – редокс-потенциал. Данный параметр позволяет получить представление о том, насколько активно происходит израсходование кислорода в биосистеме аквариума. Также он может служить основой для оценки степени загрязнённости воды разнообразными органическими отходами.

Чтобы привести окисляемость в норму, нужно провести тщательную чистку аквариума от экскрементов и остатков корма.

Какие существуют тесты для определения уровня окисляемости?

Сделать это можно при помощи марганцовки. Ниже приведена пошаговая инструкция для проведения данного теста.

    Возьмите емкость в сто миллилитров, наполовину заполните ее охлажденной и прокипяченной водой. Добавляйте в нее марганцовку до тех пор, пока раствор не приобретет насыщенный цвет.

На пятьдесят миллилитров жидкости вам понадобится две ложки марганцовки. Данной основы для проведения тестов хватит вам на несколько раз. Хранить ее нужно в темном месте, плотно закрыв крышкой.

  • Для проведения теста на редокс-потенциал вам понадобится одноразовый стаканчик и шприц без иглы. С его помощью возьмите из аквариума пробу, а затем добавьте в нее каплю раствора марганцовки.
  • Оставьте пробу на 40-50 минут, в течение этого времени вода должна поменять свой цвет. Чем меньше окисляемость, тем розовее будет жидкость. О высоком редокс-потенциале в вашем аквариуме будет говорить желтый цвет.
  • Посмотрите видео о кислотности (pH) воды:

    Кислород (О2)

    Растворенный в воде кислород играет большую роль в жизни рыбок и растений. Его недостаток и переизбыток губителен для живых организмов. Снижение концентрации O2 приводит к замедлению роста рыб, также недостаток кислорода может привести к удушью. Сильное повышение этого параметра приводит к повышению pH.

    Норма концентрации кислорода – это 5 миллиграмм на литр и чуть больше. Минимальный и максимальный показатель варьируется в зависимости от породы рыб. В среднем нижний порог составляет 3 миллиграмма, верхний – 15. Однако для малоподвижных обитателей аквариума будет достаточно 1 миллиграмма на литр.

    Для того чтобы нормализовать данный параметр необходимо обеспечить бесперебойную работу аэрации. Также в магазинах продают специальные препараты, позволяющие повысить количество кислорода в воде. Еще один способ – отселить часть обитателей аквариума в другой резервуар и посадить там как можно больше растений, которые в процессе фотосинтеза будут выделять О2.

    Реактив-препарат» для проверки «Tetra Test O2» можно купить в зоомагазине. Если говорить о внешних признаках, то о недостатке кислорода будет говорить зависание рыб на поверхности воды и заглатывание ртом воздуха.

    Углекислый газ (СО2)

    Углекислый газ является источником питания для растений, населяющих резервуар. Если его недостаточно, то рост зеленых обитателей аквариума останавливается.

    Если же данный параметр повышен, то это ведет к повышению уровня кислотности воды, что отрицательно сказывается не только на растениях, но и на рыбках.

    Нормальная концентрация СО2 — от 2 до 10 миллиграмм на литр. Минимальные значения — 3-5 миллиграмм на литр, максимальное – 30 миллиграмм на литр.

    Нормализовать концентрацию углекислого газа можно при помощи известковых таблеток.

    Аммиак и ионы аммония

    Аммиак представляет собой бесцветный газ с удушливым запахом, который, однако, не влияет на аромат воды. В воде присутствует в виде свободного аммиака (NH3) и ионов аммония (NH4), а также солей аммония. Аммиак – сильнейшая отрава для рыб.

    Максимально предельным значением концентрации аммиака является 0.5 миллиграмм на литр. Для нормализации можно использовать специальные препараты. Также необходимо заменить часть воды, отфильтровать жидкость и внести в нее концентрат, который борется с окисляющими аммиак бактериями.

    Характерными признаками повышения концентрации аммиака снижение аппетита, кровоизлияния на теле и плавниках рыб. Проверить концентрацию можно при помощи теста Нилла.

    Нитриты и нитраты

    Нитриты – это продукт переработки аммиака. Он опасен для рыб и поэтому должен быть максимально быстро преобразован бактериями в относительно безопасные нитраты. Максимальная концентрация нитритов – 0,2 миллиграмма на литр, оптимально же она не должна превышать 0,1 миллиграмма на литр. Для нитратов планка верхнего уровня устанавливается в пределах 0,8 -1 миллиграмм на литр.

    Обеспечить нормализацию нитрификации поможет биофильтр. Признаками отравления является потемнение окраски, заторможенность, потеря аппетита. Как проверить жидкость в аквариуме на нитраты в домашних условиях? Узнать точные показатели можно при помощи специального теста, который продается в зоомагазинах.

    Хлор (Cl)

    Хлор – газ желто-зеленого цвета, который хорошо растворяется в воде. Хлор производит на рыб отравляющее воздействие, повреждает жабры, кожный покров, внутренние органы.

    Предельно допустимой концентрацией хлора является 0, 25 миллиграмм на литр, а летальной – 1 миллиграмм на литр. Помочь отравленной рыбке вряд ли уже удастся.

    Нормализовать показатель можно при помощи химической очистки, которая производится препаратом дехлоратором. Также можно профильтровать водопроводную воду через активированный уголь.

    Определить уровень концентрации хлора можно при помощи теста, например, Sera. Если говорить о бытовом способе, то ориентировать можно на запах, однако такой тест не даст абсолютно достоверного результата.

    Фосфаты (РО4)

    Фосфаты – неорганические соли, получаемые из натуральных минералов. Избыток фосфатов в аквариуме может привести к появлению водорослей. Максимальная концентрация 0,3 миллиграмма на литр. Бывает и такое, что количество фосфатов в воде может равняться нулю. В этом нет ничего ужасного, особенно, если в аквариуме нет ракообразных.

    Проверить уровень фосфата можно при помощи теста, который покажет результат в зависимости от цвета, в который окрасился реагент. Чем он насыщеннее, тем больше фосфата в жидкости.

    Жесткость

    Существует несколько разновидностей жесткости. Общая жесткость (gH) определяет насколько мягкая или жесткая вода, подходит ли она для обитателей аквариума. Нормой общей жесткости являются показатели в 3-15 градусов.

    Карбонатная жесткость является переменной величиной, которая представляет собой щелочность. Она непосредственно связана с уровнем кислотности. Оптимальные показатели находятся в пределах 4-15 градусов.

    Концентрация тяжелых металлов

    Тяжелые металлы, к которым относится кадмий, ртуть, свинец, цинк и хром, являются токсичными для обитателей аквариума. Вода, в которую попадают данные металлы становится непригодной для содержания рыбок.

    Максимальная концентрация не должна превышать 0,01 миллиграмма на литр. Для того чтобы нормализовать ситуацию в аквариуме, нужно переселить рыбок в чистый резервуар, а старый аквариум тщательно очистить и удалить все предметы, которые могут содержать тяжелые металлы.

    Специальные тестов для определения концентрации тяжелых металлов не выпускается, поэтому ориентироваться можно только на информацию с сайта водоканала.

    Таблица

    Наименование показателяНорма для аквариума
    5-10 единиц
    Окисляемость5–10 миллилитров на литр
    Концентрация кислорода5 миллиграмм на литр
    Концентрация углекислого газаот 2 до 10 миллиграмм на литр
    Концентрация аммиака и ионов амонияменьше 0,5 миллиграмм на литр
    Концентрация нитритов и нитратовменьше 0,2 миллиграмма на литр для нитритов, 0,8-1 миллиграмм для нитратов
    Концентрация хлора0, 25 миллиграмм на литр
    Фосфатыменьше 0,3 миллиграмма на литр
    Общая жесткость3-15 градусов
    Карбонатная жесткость4-15 градусов

    Нормы показателей для морского резервуара

    Для аквариумов с морской водой уровень допустимого pH находится в пределах 8.1-8.3 единиц, а для рыб, которые привыкли обитать в лагунах, он достигает 8,5 единиц. Остальные же показатели находятся в тех же рамках, что и пресноводных аквариумов.

    Видео по теме

    Посмотрите видео о параметрах воды в аквариуме:

    Таким образом, вы узнали как создать для своих рыбок максимально комфортные условия для обитания. Следите за параметрами, и ваш аквариум будет вас радовать в течение долгого времени.

    Калькулятор внесения удобрений

    Для использования калькулятора необходимо сделать замеры проб аквариумной воды на содержание фосфатов, нитратов и железа. Для внесения комплекса Macro NPK удобрений рассчет базируется по фосфатам, а составы Micro рассчитываем по железу, это своего рода точкb отсчета. Если тестов нет в наличии, — значения тестов можно не вводить, тогда получите усредненный результат, но мы рекомендуем все же обзавестись тестами.

    Внимание! Калькулятор для Макро и Микро комплексов все еще в разработке, поэтому будьте внимательны с данными! Еще не все функции реализованы. Когда уберем значек БЕТА – можно будет использовать его полноценно. Другие мини-калькуляторы готовы, ими уже можно пользоваться.

    ВеществоРезультатОптимальноДопуск
    Нитрат, NO3, мг/л
    Фосфат, PO4, мг/л
    Железо, Fe, мг/л
    ПрепаратДневная доза
    Macroнет данных
    Microнет данных
    Подача CO2нет данных
    Расписание внесения удобрений на неделю

    ПрепаратПнВтСрЧтПтСбВс
    MacroГолодный
    день
    Контроль
    системы
    (вечером)
    Micro
    Fe+Mn
    Antistress
    Element CO2

    1. Перед внесением микро-комплексов меряем железо. Вносим комплекс только если железо менее 0.1 мг/л. В зависимости от типа растений также возможна дополнительная подкормка Fe+Mn.
    2. Перед внесением макро-комплекса меряем фосфаты. Вносим комплекс если фосфаты менее 0.5 мг/л (возможны расхождения в зависимости от освещения, растительности, подачи углекислого газа и тд). Расчет вносимой дозы делаем следующим образом:

    Калькулятор для внесения моносостава нитратов Macro N+K

    Рекомендуем держать нитрат на уровне 5. 15 мг/л. Азот является органогенным элементом, растение на 1,5% состоит из него, поэтому его важность неоспорима, а постоянный контроль концентрации в аквариумной воде так же важен, как и контроль наличия фосфатов.

    Калькулятор для внесения моносостава фосфатов Macro P+K

    Рекомендуем держать фосфат по верхней границе (после внесения) на уровне 0.5 мг/л, нитрат на уровне 5. 10 мг/л. При большей концентрации фосфат начинает активно связывать катионы железа и других металлов, образуя с ними нерастворимые, непригодные для растений соли.

    Рассчет внесения Калия (K)

    Внесите весь суммарный объем вносимых удобрений за неделю, а также корректирующих составов.
    Например: У вас аквариум 100 литров и Вы вносите ежедневно 2 мл , и дополнительно в течение недели дважды по 2 мл . Итого вы должны ввести в поле “Основное Макро” 18 мг.

    Калий является важнейшим транспортным агентом, регулятором водного насоса в растении, а также выполняет ряд других важных функций. Необходимо постоянное его присутствие в аквариумной воде, без жестких количественных рамок, так как он не является лимитирующим фактором. При этом надо обратить внимание на концентрацию, так как возможна и калиевая передозировка. Принято считать что его концентрация в воде должна соотноситься с азотом в соотношении 1 к 1.5, но при этом количественно его потребления ниже, так как фактически калий не является строительным материалом для клетки.

    Рекомендуется вносить калий при первых признаках недостатка, а именно: – деградация и отмирание верхушек, пожелтение листьев; – нарушение структуры листа (дырки); – скручивание и деформация листовой пластины; – слишком мелкие новые листья; – медленный рост.

    Рассчет концентрации углекислого газа (CO2) в воде

    Организуйте подачу СО2 в аквариум и достаточное его распыление, отрегулируйте количество СО2 на уровне 30 мг/л., или обеспечьте растения углеродом с помощью внесения .

    Калькулятор для внесения мезоэлементов H2O Реминерализатора

    Для повышения жесткости на 3.5 o Gh — 1 столовая ложка без горки (16 грамм) на 100 литров воды. Размешать навеску в литре воды и влить в подмениваемую воду.

    Калькулятор для расчета внесения Железа и Марганца Fe+Mn

    Состав сбалансирован аминокислотным комплексом марганца. Дозировка 1 . 2 мл / 100 литров, в зависимости от плотности посадки и типов растений (например хемиантус куба потребляет очень много железа, а замечательная бликса приобретает очень насыщенный цвет).

    Фосфор – польза и вред для аквариума.

    Фосфор – необходимый для жизни аквариума элемент.
    Животные используют его для развития костной и нервной систем, он содержится во многих белков и таких соединениях как АТФ и ДНК.

    Однако главными потребителями фосфора в аквариуме являются все-таки растения. Для них фосфор является макроэлементом , нормальное развитие растений без него невозможно.
    Растения потребляют соединения фосфора (фосфаты) как непосредственно из воды, так и из грунта.

    Вроде бы – волноваться не о чем, фосфор в аквариуме всем на пользу. Но не все так просто… Есть в этой бочке фосфора меда и ложка дегтя. Причем немаленький такой половничек.

    Водоросли, как и высшие растения, тоже очень любят фосфаты. И избыток их в аквариумной воде очень даже может спровоцировать водорослевую вспышку. Если такой избыток возникает при хорошем освещении аквариума и плохой биологической фильтрации, да еще на фоне повышенного содержания в воде соединений азота, то проблемы с водорослями обеспечены.

    В свою очередь бурный рост водорослей приводит к недостатку питательных веществ для высших растений и – такое тоже возможно – замору ракообразных.

    Такая вот безрадостная картина…

    Дело усугубляется тем, что в природных водоемах содержание фосфатов обычно ниже, чем в аквариумах, а поэтому достичь опасной концентрации соединения фосфора могут запросто.

    Откуда же берутся фосфаты в наших аквариумах?

    Основным их источником является водопроводная вода.
    Некоторые водозаборные станции специально добавляют фосфаты в воду. В этом случае при возникновении проблемы подмены воды в аквариуме ничего не дадут.

    Вторым по “объему поставок” источником фосфатов является корм для рыб и ракообразных.
    Специализированные корма, конечно же, содержат так нужный животным фосфор! А их (кормов) несъеденные остатки киснут в грунте, ухудшая биобаланс аквариума в целом и ситуацию с фосфатами в частности.

    Опять-таки, рыбы и креветки не усваивают весь содержащийся в корме фосфор. И часть его с экскрементами попадает в грунт, где и накапливается (в том числе, вступая в соединения с кальцием и другими металлами и образуя соли).
    Здесь опасность заключается еще в том, что при сдвиге физико-химических параметров воды в аквариуме возможна ситуация, когда эти соли начнут активно растворяться, резко повышая уровень фосфатов

    Итак, как же бороться со столь необходимым в аквариуме элементом, как фосфор?

    Перво-наперво нужно узнать концентрацию фосфатов в воде, используемой для подмен. Если она содержит слишком много фосфатов, помочь может осмотический фильтр или специальные препараты-адсорбенты.

    Второе о чем нужно помнить – чистота в аквариуме. Никаких киснущих остатков корма, гниющих листьев и разлагающихся трупиков погибших рыб! Регулярная сифонка грунта. Еженедельные подмены воды (с учетом пункта “во-первых”).

    Третье, что может нам помочь – большая масса растений. Т.к. наибольшую проблему представляют фосфаты, скапливающиеся в грунте, то наиболее эффективно использование для борьбы этой напастью растений, обладающих мощной корневой системой. Например, эхинодорусов.
    Длинностебельные растения, вроде роголистника, даже обладая хорошей биомассой и высокой скоростью роста, тут помощники слабые.

    Если это не навредит обитателям аквариума, для борьбы с повышенным содержанием фосфора можно увеличить карбонатную жесткость воды. Образуя соли-фосфаты, элемент будет оседать на дне. Тут опять вспоминаем про сифонку грунта и растения с мощными корнями.

    Еще в грунте живет множество разных микроорганизмов, перерабатывающих фосфаты и нитраты. Но на них полагаться не будем, они же маааахонькие! И восстановить нарушенное равновесие – не в их силах.

    Такая вот вышла статья о пользе и вреде фосфора в аквариуме…

    В конце напомню, что прежде чем начинать борьбу, нужно определиться с наличием проблемы. Т.к. в вычищенном от фосфора аквариуме жизнь невозможна.

    Нормальной считается концентрация фосфатов в аквариумной воде до 0.3 мг/л. Измерить ее можно с помощью специальных капельных тестов.

    В случае использования осмотического фильтра для обработки воды Вам, скорее всего, придется не уменьшать, а увеличивать содержание PO4 в воде.
    Не ленитесь это делать, иначе про красивые растения можно забыть. Тем более, что это не так сложно. Фосфаты есть практически в любом комплексном удобрении для аквариумных растений.

    Ссылка на основную публикацию